Chapter 3 Dynamics

Newton's Laws

" Strong people don't put others down. They lift them up "

> Darth Vader, Philanthropist

Newton's 1st Law

- Objects with mass have Inertia: the tendency to stay at rest (or moving!)
- The more mass an object has, the more difficult it is to accelerate

- Waiter trick
- AKA paper and funnel trick
- Penny and cardboard

Gaijin Yokozuna!?

Newton's 2nd

- The force necessary to me objects depends on:
 - mass
 - acceleration

 Ex 1: how much force is necessary to accelerate a 80kg student at 10 m/s²?

$$F_{net} = ma = 80kg \cdot 10 \frac{m}{s^2} = 800N$$

What do we mean "net" force?

- Net force is zero if there are no unbalanced forces
- We usually do not notice forces until they become unbalanced
- Ex. What are the forces acting on these suction cups?

Free Body Diagrams

- The point of a FBD is to simplify the dynamics involved
- We only point out the forces acting on the body in question
- To get to the point, we draw the body as a...

 F₂ • The forces are drawn pointing away from the body

Any questions ?

Kid who's had their hand up for so long that they had to take it down because they literally couldn't hold it up for any longer

Kid who's stretching

What if there is more than one force?

- Ex 2: Jordan applies a 50 N force to a 2.5kg book to slide it across the table. Find the acceleration if there is a 45 N friction force resisting this motion
- This is a vector equation, so we have to consider these opposing vector forces as having opposite signs $F_f \longleftarrow F_a$

 $F_{net} = ma$ $a = \frac{F_{net}}{m} = \frac{F_a + F_f}{m}$

 $a = \frac{50N + (-45N)}{2.5kg}$

Solve for coefficient of friction

- If Dawn pulls Bradey (579N) across the floor with a 90N force at 40° above the horizontal, find μ

V $\boldsymbol{\chi}$ $F_{Mx} = 90\cos 40 = 68.9N$ $F_{Mv} = 90 \sin 40 = 57.9 N$ $F_{f} = -F_{Mx} = 68.9N$ $R = -F_g - F_{Mv}$ $\mu = \frac{F_f}{R} = \frac{68.9}{521} = 0.13$ = -(-579) - 57.9= 521N

Exercises

- Start p. 66-7 #4,6
- #4 F=ma
- $F_g + F_T = ma$
- mg+(-65g)=ma
- a=(75(-9.8)+(-65)(-9.8))/75

Double Body Diagrams

- 1.A diagram that has two (or more) masses in it [often involving inclined plane and/or pulley]
- 2.Consider what external forces are affecting the system as a whole. *What about tension!?*
- 3.Decide what is negative (-) and what is positive (+) from the diagram, NOT from numbers!

Considering the system

We only have two external forces

Now use 2nd Law

$$F_{net} = ma$$

$$a = \frac{F_{net}}{m} = \frac{29.4 + (-19.6)}{5} = 1.96 \frac{m}{s^2}$$

 Try it! Choose any random weights and measure acceleration
 ③

Evaluation

Compare your experimental results
 with the theoretical prediction

$$\% diff = \frac{experimental - theoretical}{theoretical} \times 100\%$$

$$\% diff = \frac{2.2 - 2.0}{2.0} \times 100\% = 10\%$$

• Finish with an analysis of sources of error and possible improvements

Now find tension

 Apply Newton's 2nd law to just one mass: F_T

$$F_{net} = ma$$
 F_{g^2}

$$F_T + F_{g2} = ma \qquad F_T = ma - F_{g2}$$

= 2(1.96) - (-19.6N) = 24N Try #3 p. 67

Inclined plane?

We can tilt our axes so x is parallel, y is perpendicular to the surface

$$a = F_{gx}/m = 4.9 m/s^2$$

Example 2: Inclined 2 body

Considering the 12 kg mass

• We only have unbalanced forces in the x-direction

Considering the 10 kg mass

 We only have forces in the ydirection

$$F_g = mg = 10.0kg \times \left(-9.8\frac{N}{kg}\right)$$

= 98N

Considering The System

• Manually apply the correct polarity depending on which forces are opposing

$$F_{net} = ma \qquad F_{gx} + F_{g10} = ma$$

$$a = \frac{102N + (-98)N}{22kg} \qquad a = 0.17 \frac{m}{s^2}$$

Example 3: Inclined 2 body

Considering the 3 kg mass

 We only have forces in the ydirection

$$F_g = mg = 3.0kg \times \left(-9.8\frac{N}{kg}\right)$$

= 29.4N

Considering Mass 1

• We only have unbalanced forces in the x-direction

Considering The System

• Manually apply the correct polarity depending on which forces are opposing

$$F_{net} = ma$$
 $F_{gx} + F_{g3} = ma$

$$a = \frac{-9.8N + 29.4N}{5kg} \qquad a = 3.9 \frac{m}{s^2}$$

Experiment: Inclined 2 body *Just one job: Find friction

Considering mass 1

• We only have unbalanced forces in the x-direction

Considering mass 2

• We only have forces in the ydirection

$F_g = mg$ =8.0N

Finding acceleration

Use data from vidanalysis or stopwatch (take several trials) 1.2 1.8 2.4 3.0 2.6

- Ex: $s=ut+1/2at^2$
- $a = 2s/t^{2}$
- $a = 2(0.5)/2.0^2$
- $a = 0.25 \text{ m/s}^2$

Finding friction

$$F_{net} = ma$$

$$F_{gx1} + F_{g2} + F_{f} = ma$$

$$F_{f} = ma - F_{gx1} - F_{g2}$$

$$F_{f} = (0.82 + 0.42)0.16 - (-1.0) - 8.0$$

$$F_{f} = 1.24(0.16) - 7.0 \text{ N}$$

$$F_{f} = -6.8 \text{ N}$$

Theoretical acceleration

$$F_{net} = ma$$

$$F_{gx1} + F_{g2} = ma$$

a = ($F_{gx1} + F_{g2}$)/m
a = (-1N + 8 N)/(0.82+0.42)
a = 5.6 m/s²

Finish

- 3b) Us F_T+F_g=r

Can we use an inclined plane to find the friction coefficient for a book on your table?

Newton's 3rd Law

- For every action there is an equal and opposite reaction
- When you hit something, it hits back!

You exert as much gravitational force on the Earth as it exerts on you

- When an object is in contact with a supporting surface, it pushes down on that surface
- Newton's 3rd Law states the surface pushes back with an equal and opposite force
- This is often (but not always!) equal to the object's weight, hence "apparent weight"

Simple case: object at rest

 Ex 3: What is the normal force acting on the 2.5 kg book resting on your desk?
 What forces act on the book?

- What horces act on the book? F_N -Free body diagram $F_{net} = ma$ F_{P}

$$F'_g + F'_N = 0$$

 $F_N = -mg = 24.5N$

Extended object at rest

ŀΝ

 $F_{g} \downarrow F_{e}$

- Ex 4: what is the normal force acting on your book as you lean on it with a 35 N force?
 - What forces act on the book?
 - Gravity and Normal force, applied force
 - Free body diagram
 - Apply 2nd law

 $F_N = -F_g - F_a = -(-24.5N) - (-35N)$

Accelerating object

- Ex 5: find the normal force acting on a 50 kg student accelerating upwards at 3.4 m/s^2 F_{N}
 - What forces act on the student?
 - Gravity and Normal force
 - Free body diagram
 - Apply 2nd law

$$F_N = -(-490N) + (50kg \cdot 3.4 \frac{m}{s^2}) F_N = 660N$$

1)b)draw the resultant

Ex 2) a) FBD

 $R = -F_g - F_{ay} = -mg - 65N\sin(-25^\circ)$ $F_N = 76.5N$

 $F_f = \mu R$

 $F_f = 0.25 \times 76.5N$

 $F_f = -19.1N?$

 $=7.96 m/s^{2}$

Friction

- Friction is a force between two objects sliding (or trying to slide) past each other
- Friction force increases when you have more:
 - force between the objects
 - roughness of the surfaces

Friction

 We find friction force is proportional to the Normal force and a "stickiness factor" μ (called the coefficient of friction)

$$F_f = \mu R$$

• Ex 1: find the friction force acting on your 2.5 kg textbook as it slides across the table if μ =0.55

Ex 1: m=2.5 kg, μ=0.55

$$\mathcal{Y}$$

$$R + F_g = 0$$

$$R = -F_g = -mg$$

$$\left|F_f\right| = \mu R = \mu mg$$

$$\left|F_f\right| = 0.55(2.5)9.8$$

$$\left|F_f\right| = 13.5N$$

Object on an incline

We can redefine x and y as parallel and perpendicular to the surface

This means F_g must be resolved into components F_{gx} and F_{gy} $F_{gy} = F_g \sin \theta$

The catch!!! • When we look at θ , we see it is usually NOT the angle given θ=90° - 40° =50° Since there is no y 40° acceleration: $\boldsymbol{\chi}$

 $F_{net} = ma$ $F_{net} = ma$ $F_{gx} = ma_x$ $R + F_{gy} = 0$

Find a, neglecting friction

- With no friction, the y direction takes care of itself
- In the x-direction:

Ex: find a, neglecting friction

- The only acceleration will be in the x-direction
- The only x force is F_{gx}

 $F_{gx} = F_g \cos\theta = mg \cos\theta$

$$F_{net} = mg\cos\theta = ma_x$$
 $a_x = \frac{mg\cos\theta}{m} = g\cos\theta$

Ex 1: find a, with μ =0.25, m=2.1kg

$$\begin{aligned} \mathcal{F} \\ R + F_{gy} &= ma_y = 0 \\ R &= -F_{gy} = -mg\sin\theta \\ F_f \Big| = \mu R = \mu mg\sin\theta \\ \mathbf{Y} \end{aligned}$$

12

$$F_{net} = F_{gx} + F_f = ma_x$$
$$a_x = \frac{mg\cos\theta - \mu mg\sin\theta}{m}$$

- We now have F_{gx} and F_{f} in the x-direction
- In order to find F_f we also need to look at the y-direction

 $a_{\rm r} = g(\cos\theta - \mu\sin\theta)$

 $a_x = g(\cos\theta - \mu\sin\theta) = 9.8(\cos 55 - 0.12\sin 55) = 4.66\frac{m}{\pi^2}$

Questions

- Finish p. 67 #1-6
- Start Chapter Review p. 95 #1-2, 23-25

Ex 2: How steep?

- If you have enough power, the only limiting factor is μ
- For the critical case, friction force is at a maximum
- To barely make it up the hill, balance x forces

Ex 2: How steep for μ =1?

$$\mathcal{Y}$$
 • We have $F_{gx} = -F_f$ in the x-direction

In order to find F_f we also need to look at the y-direction

 $\tan \theta = \frac{1}{\mu}$

 $\theta = \tan^{-1}\left(\frac{1}{\mu}\right)$

$$F_{f} = \mu R = \mu mg \sin \theta$$
$$F_{net} = F_{f} + F_{gx} = 0$$
$$mg \cos \theta = \mu mg \sin \theta$$

 $R + F_{gv} = ma_v = 0$

 $R = -F_{gv} = -mg\sin\theta$

X

How steep is a ?

Ex 2: How steep?

• How steep if μ =0.9?

$$\theta = \tan^{-1}\left(\frac{1}{\mu}\right) \qquad \theta = \tan^{-1}\frac{1}{0.9} = 48^{\circ}$$

• How steep if μ =0.1?

$$\theta = \tan^{-1} \frac{1}{0.1} = 84^{\circ}$$

$$\phi = 6^{\circ}$$

Ex 3: Find μ

- Dayton tilts the table until the object starts sliding.
- What is μ ?

Ex 3: Find μ

$$F_{N} + F_{gy} = ma_{y} = 0$$
$$F_{N} = -F_{gy} = -mg\sin\theta$$
$$X$$

 \mathbf{V}

- Use the y direction to find the normal force
- F_{gx} = -F_f in the xdirection at the point it just starts sliding

$$F_{f} = \mu F_{N} = \mu mg \sin\theta$$
$$F_{net} = F_{f} + F_{gx} = 0$$
$$mg \cos\theta = \mu mg \sin\theta$$

$$\tan\theta = \frac{1}{\mu}$$

$$\mu = \frac{1}{\tan \theta}$$

Double Body Diagrams

- 1.A diagram that has two (or more) masses in it [usually involving inclined plane and/or pulley]
- 2.Consider what external forces are affecting the system as a whole. Don't worry about tension!
- 3.Decide what is negative (-) and what is positive (+) from the diagram, NOT from numbers!

a = That's for you
to find out!

Considering the system

We only have two external forces

Considering the system

• Applying Newton's 2nd law:

Considering the system

• Applying Newton's 2nd law:

Example 2: Inclined 2 body Double Body Diagram: neglect friction for now

Ex 1) Given diagram, what is acceleration of m_1 ?

 We only have forces in the ydirection

$$F_g = mg = 3.0kg \times \left(-9.8\frac{N}{kg}\right)$$

= 29.4N

 We only have acceleration in the xdirection

Considering The System

 We have to look at unbalanced forces and which ones are opposing to manually apply the correct polarity

$$F_{net} = ma \qquad F_{gx} + F_{g3} = ma$$

$$a = \frac{-9.8N + 29.4N}{5kg} \qquad a = 3.9 \frac{m}{s^2}$$

Now including friction:

Ex 1) Given μ =0.23, what is the acceleration of m₁?

 $a = ?m/s^2$

 We only have forces in the ydirection

$$F_g = mg = 3.0kg \times \left(-9.8\frac{N}{kg}\right)$$

= 29.4N

 We only have acceleration in the xdirection, but we have to balance yforces to solve for friction

Considering The System

 We have to look at unbalanced forces and which ones are opposing to manually apply the correct polarity

$$F_{net} = ma \quad F_f + F_{gx} + F_{g2} = ma$$

$$a = \frac{-3.904N - 9.8N + 29.4N}{5kg}$$

Exercises

- P. 66-7 #1-6
- Lab: design a 2 body system, find acceleration
- P. 95 Chapter Review 1,2,23-25, Test Yourself 5-7,9-10,12
- Test next week

Design a Double Body system, calculate theoretical acceleration and compare to experimental (friction optional)

Exercises

- Review Questions p. 95-98 1-23 (Bonus 24-27)
- Test Yourself p. 98-102 #1-13
- Quiz Wednesday
- Chapter Test Friday =-O