## Nuclear Physics

The revolution!

"Creating a new theory is not like tearing down an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up."

## Uncuttable?

## The Atom

- Thompson proved in 1897 that cathode rays were particles from inside the "a-tomos" or "un-cuttable" atom

- Nagaoka pictured a planetary model for the atom, with electrons around a central mass



## Plum Pudding

- Thompson instead supported Lord Kelvin's suggestion that electrons were embedded in a positively charged "pudding"

- Rutherford showed Nagaoka was correct by probing the atom with alpha particles



## Geiger-Marsden experiment

- Rutherford's results showed the atom is mostly empty space, with a very dense nucleus

- To see why, try firing pennies at water "pudding" then 50 g "nuclei" spaced out on your table



## Data table for 50 "shots"

| Model | \# alpha <br> particles | Straight <br> Through | Slight <br> Deflection | Bounce <br> Back |
| :--- | :--- | :--- | :--- | :--- |
| Plum <br> pudding |  | HH | II |  |
| Solar <br> system |  |  |  |  |

Ex 1: Use the closest approach for 8.2 MeV alpha particles to a gold nucleus (to estimate outer limit of radius of nuclei)

$$
\Delta E_{p}=\frac{k Q q}{r}-\frac{k Q q}{\infty} \quad r=\frac{k Q q}{\Delta E}
$$

$$
\begin{aligned}
& r= 9 E 9(79 \cdot 1.6 E-19) 2 \cdot 1.6 E-19 \\
& 8.2 E 6(1.6 E-19) \\
& r=2.8 \times 10^{-14} \mathrm{~m} \approx 10^{-14} \mathrm{~m}
\end{aligned}
$$

## Compare to theoretical radius R :

$$
R=R_{0} A^{1 / 3}
$$

Where $\mathrm{R}_{0}$ is the fermi radius, and A is the atomic mass number:
$R=1.2 \times 10^{-15} \mathrm{~m}\left(1^{1 / 3}\right)=1.2 \times 10^{-15} \mathrm{~m}$
Ex: find the radius of a U-238 nucleus

$$
R=1.2 \times 10^{-15} m\left(238^{1 / 3}\right)=7.4 \times 10^{-15} m
$$

## We can also use diffraction to find D

## $\sin \theta \approx \frac{\lambda}{D}$

Ex: A beam of 80.0 MeV neutrons are diffracted upon passing through a thin lead foil. The first minimum in the diffraction pattern is measured at $12.6^{\circ}$. Estimate the diameter of the lead nucleus.
SOLUTION: Use $\lambda=h / p$ and $m=1.67 \times 10^{-27} \mathrm{~kg}$.

- $E_{\mathrm{K}}=\left(80.0 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)=1.28 \times 10^{-11} \mathrm{~J}$.
- Since $E_{\mathrm{K}}=p^{2 /}(2 m)$ we see that

$$
p^{2}=2 m E_{\mathrm{K}}=2 \times 1.67 \times 10^{-27} \times 1.28 \times 10^{-11}=4.275 \times 10^{-38} .
$$

-Then $p=2.068 \times 10^{-19} \mathrm{~N} \cdot \mathrm{~s}$ so that

$$
\lambda=h / p=6.63 \times 10^{-34} / 2.068 \times 10^{-19}=3.207 \times 10^{-15} \mathrm{~m} .
$$

$\bullet D=\lambda / \sin \theta=3.207 \times 10^{-15} / \sin 12.6^{\circ}$
$=1.47 \times 10^{-14} \mathrm{~m}$.

## The Bohr Atom

- Nils Bohr demonstrated the electrons in an atom are confined to particular energy levels.
- He called these levels "orbitals"
- Absorbing or emitting energy (a photon) causes the electron to jump between levels



## Bohr's postulates

- Radiation is only emitted when the atom (electron) makes a transition from a higher to a lower energy state
- The difference in energy between the two states, $\Delta E=h f$
- The angular momentum of the electron is quantized in units of $\mathrm{h} / 2 \pi(\mathrm{mvr}=\mathrm{h} / 2 \pi)$


## Physics Dog Ponders:

"What's in the box?"

## Electron in a box



- For energy level n in a hydrogen atom, where L is the length of the box, aka orbital circumference, $m_{e}$ is the mass of the electron


## Limitations?

- This model gives confusing spacing of energy levels.




# The Bohr does provide an explanation for the spectrum of EM radiation emitted from an excited atom 

It doesn't explain the relative intensity of spectral lines


- Ex: find the wavelength of a photon absorbed for $a n=1$ to $n=2$ jump


$$
\Delta E=10.2 \mathrm{eV}
$$

- Ex: find the wavelength of a photon absorbed for $a n=1$ to $n=2$ jump

$$
\begin{gathered}
\quad \Delta E=10.2 \mathrm{eV}\left(1.6 \times 10^{-19} \mathrm{C}\right)=h f \\
\lambda=\frac{c}{f}=\frac{h c}{E} \\
\lambda=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\left(3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)}{1.6 \times 10^{-18} \mathrm{~J}}
\end{gathered}
$$



$$
\lambda=1.2 \times 10^{-7} \mathrm{~m}
$$



## Spectrum activity

- Sketch the spectrum for:
- Incandescent light
- Fluorescent light
- LED light
- Nitrogen
- Neon

Visible Spectrum


- Water




Use these wavelengths to find $\mathrm{n}=3$ given $n=2$ corresponds to -3.4 eV

$$
\begin{aligned}
& E=\frac{h c}{\lambda} \quad E_{\alpha}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\left(3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)}{656 \times 10^{-9} \mathrm{~m}} \\
& E_{\alpha}=3.03 \times 10^{-19} \mathrm{~J}=1.9 \mathrm{eV} \quad E_{3}=-3.4+1.9=-1.5 \mathrm{eV}
\end{aligned}
$$

## Einstein

Einstein described light as a stream of particles called "photons," each with an energy defined by their frequency. Photoelectric effect shows:

$$
E=h f
$$

- Ex 1: Find the energy of a radio photon from NL 610 AM ( 610 kHz )

$$
\begin{aligned}
& E=h f=6.63 \times 10^{-34} \mathrm{JS} \cdot 6.1 \times 10^{5} \mathrm{~Hz} \\
& E=4.0 \times 10^{-28} \mathrm{~J}=2.5 \mathrm{neV}
\end{aligned}
$$

- Physics Dog wants you to find the energy of an Ultraviolet ray photon with frequency $5 \times 10^{17} \mathrm{~Hz}$

$$
\begin{gathered}
E=h f=6.63 \times 10^{-34} \mathrm{JS} \cdot 5.0 \times 10^{17} \mathrm{~Hz} \\
E=3.3 \times 10^{-16} \mathrm{~J}=2.1 \mathrm{keV}
\end{gathered}
$$



Find the minimum frequency for pair production

$$
\begin{gathered}
E=h f \quad m c^{2}=h f \\
f=\frac{m c^{2}}{h}=2.5 \times 10^{20} \mathrm{~Hz}
\end{gathered}
$$



## Photoelectric effect

- Photons above threshold frequency cause electrons to be
 emitted from metal plate
- Stopping potential allows us to measure kinetic energy of electrons



## Work Function

$$
E_{\max }=h f-\phi
$$


fig. 2: Photoelectric Effect Measured with Plate and Voltage

- Maximum kinetic energy of photoelectron depends on the work function of the metal $\phi$


## Exercises

1 A sample of sodium is illuminated by light of wavelength 422 nm in a photoelectric tube. The potential across the tube is increased to 0.6 V . At this potential no current flows across the tube. Calculate:
(a) the maximum KE of the photoelectrons
(b) the frequency of the incident photons
(c) the work function of sodium
(d) the lowest frequency of light that would cause photoelectric emission in sodium.

2 A sample of zinc is illuminated by UV light of wavelength 144 nm . If the work function of zinc is 4.3 eV , calculate
(a) the photon energy in eV
(b) the maximum KE of photoelectrons
(c) the stopping potential
(d) the threshold frequency.

3 If the zinc in Question 2 is illuminated by the light in Question 1, will any electrons be emitted?
4 The maximum KE of electrons emitted from a nickel sample is 1.4 eV . If the work function of nickel is 5.0 eV , what frequency of light must have been used?

$$
\begin{gathered}
\text { Ex:\#1p. } 231 \\
E_{\max }=0.6 \mathrm{eV} \\
E_{\max }=9.6 \times 10^{-20} \mathrm{~J} \\
c=f \lambda \quad f=\frac{c}{\lambda}=\frac{3.00 \times 10^{8}}{422 \times 10^{-9}} \\
f=7.11 \times 10^{14} \mathrm{~Hz}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Ex: }
\end{aligned}
$$

$$
\begin{aligned}
& h f=\phi \quad f=\frac{\phi}{h} \quad=\frac{3.75 \times 10^{-19} J}{6.63 \times 10^{-34} J S} \\
& f=5.7 \times 10^{14} \mathrm{~Hz}
\end{aligned}
$$

## Stopping Potential $h f=h f_{0}+e V$



- Ex: The quantum nature of radiation

LIGHT IS A
PJrficues.

## de Broglie

- de Broglie explained Bohr's model by describing the electron as a standing wave
- Only waves that have an even number of wavelengths are allowed
- Schroedinger took this further to describe the electron's location as a wave equation



## de Broglie

- Ex: find your wavelength!

$$
\begin{aligned}
p=\frac{h}{\lambda} & \lambda=\frac{h}{p} \\
= & \frac{6.63 \times 10^{-34} \mathrm{Js}}{105 \mathrm{~kg} \cdot 10 \mathrm{~m} / \mathrm{s}} \\
= & 6.3 \times 10^{-37} \mathrm{~m} \cong 10^{-36} \mathrm{~m}
\end{aligned}
$$

## de Broglie

- Ex: find the wavelength of an electron moving at 0.5 c

$$
\begin{aligned}
& p=\frac{h}{\lambda} \quad \lambda=\frac{h}{p} \\
&= \frac{6.63 \times 10^{-34} \mathrm{JS}}{9.11 \times 10^{-31} \mathrm{~kg} \cdot 1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}} \\
& \quad=4.9 \times 10^{-12} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { P. } 232 \# 5-8 \\
& \text { P. } 235 \# 9-10
\end{aligned}
$$

## Davisson-Germer Experiment



## Davisson-Germer PhET



2ixationt

## Davisson-Germer

- Experiment to find which of the following affect electron diffraction angles:
- Velocity
- Atom Separation
- Atom Radius
$\rightarrow$ When you are finished, do \#19 p. 244
Davison Germer Example


## What part of

$i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V(x) \Psi(x, t) \equiv \tilde{H} \Psi(x, t)$,

## Don't you understand?



## Schrodinger's model



- Electrons are like a wave with only certain wavelengths allowed
- The position is undefined, but a wave function $\psi$ determines the probability of locating it


(c) Radial probability


## Schrodinger's cat




# SGHRÖDINGER'S CAT IS <br>  

## Ok, but what does an atom "really" look like?

## Orbitals




## P. 239 \#11a

 Given $\mathrm{E}=1000 \mathrm{~N} / \mathrm{C}$ find v$$
q E=q v B \quad v=\frac{E}{B}=\frac{1000}{0.1}=10 \mathrm{~km} \cdot \mathrm{~s}^{-1}
$$

\#11b find m (in unified amu)
$q v B=m \frac{v^{2}}{r} \quad m=\frac{r q B}{v}=\frac{9.6 \times 10^{-26} \mathrm{~kg}}{u}$

$$
m=57.5 u
$$

## No, not that Heisenberg



## Hélisenberg

```
SAVOURTTE SCIENCE JOKE
SO SCHRODINGER AND HEISENBERG ARE DRIVING DOWN THE MOTORWAY WHEN A COP PULLS THEM OVER.
HE WALKS UP TO THE WINDOW AND ASKS: "SIR, DO YOU KNOW HOW FAST YOU WERE GOING?" HEISENBERG REPLIES: "NO BLIT I KNOW EXACTLY WHERE I WAS"
THE COP, THINKING SUCH A WEIRD RESPONSE DESERVES FUIRTHER INVESTIGATION, TELLS HEISENBERG TO OPEN THE BOOT OF THE CAR. HE LOOKS IN AND SEES A DEAD CAT.
"DO YOU KNOW THERE'S A DEAD CAT IN HERE?!" HE SHOLTS
SCHRODINGER REPLIES "WELL I DO NOW!"
``` That

\section*{Uncertainty principle}
\[
\Delta x \Delta p \geq \frac{h}{4 \pi}
\]
- Where \(\Delta x\) is the uncertainty in the position and \(\Delta \mathrm{p}\) is the uncertainty in the momentum

\section*{Ex 1a: find the uncertainty in momentum}
- An electron passes through a thin slit of width \(\Delta \mathrm{x}=23 \mu \mathrm{~m}\)
\[
\begin{aligned}
\Delta x \Delta p & \geq \frac{h}{4 \pi} \quad \Delta p \geq \frac{h}{4 \pi \Delta x} \\
\Delta p & \geq \frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{4 \pi\left(23 \times 10^{-6} \mathrm{~m}\right)} \\
\Delta p & \geq 2.29 \times 10^{-30} \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
\]

\section*{Ex 1 b : what direction is the uncertainty in momentum, relative to the original direction of the electron beam?}

- Perpendicular to beam direction

\section*{Uncertainty principle}
\[
\Delta E \Delta t \geq \frac{h}{4 \pi}
\]
- Where \(\Delta \mathrm{E}\) is the uncertainty in the change in energy and \(\Delta t\) is the uncertainty in the time that energy change occured

\section*{Ex 2: hydrogen atom}


Einstein discovers that time is actually money.

\section*{Isotopes}
- Elements have a characteristic number of protons,
- e.g. Hydrogen always has one proton
- They may have different numbers of neutrons
- Neutrons help to glue together the nucleus of mutually repulsive protons


\section*{Radioactivity}
- Marie and Pierre Curie discovered that some isotopes are unstable: they spontaneously decay and give off radiation


\section*{Energy}


Particle

\section*{What are the effects of radiation?}


\section*{Up and Atom!}


\section*{You wouldn't like me when I'm}


\section*{Radiation}
- Radiation from the nucleus comes in three flavors:
\(-\alpha\) (Alpha): massive, "slow", blocked by paper. \(\mathrm{He}^{2+}\)
\(-\beta\) (Beta): fast, low mass, blocked by \(>10\) sheets of Al foil. \(\mathrm{e}^{-}\)
\(-\gamma\) (Gamma): high energy E-M radiation AKA "light". Gamma ray photon. Blocked by thick lead


\section*{Nuclear equations}
- Balance charge, then mass
- Ex: write the equation for the alpha decay of U-238
\[
\begin{aligned}
& 238 \\
& 92
\end{aligned} \int \underset{9}{234} \Gamma \longrightarrow+{ }_{2}^{4} \longrightarrow
\]
- Nuclear energy levels are quantized, so the alpha particles typically have a kinetic energy of 5 or 8 MeV . Also, we often get gamma radiation following alpha

\section*{Decay Series of Uranium-238 to Lead-206}

- Ex: write the equation for the beta decay of C-14

- Beta energy levels are also quantized, but we don't see discrete beta energies, since the antineutrino carries away some of the energy
- Ex: write the equation for the beta+ decay of Na-22
\[
{ }_{11}^{22} N a \rightarrow{ }_{10}^{22} N e+{ }_{1}^{0} e^{+}+v
\]
- Ex: write the equation for the beta decay of Th-231
\[
{ }_{90}^{231} T h \rightarrow{ }_{91}^{231} P a+{ }_{-1}^{0} e^{-}+\bar{v}
\]
- Ex: write the equation for the alpha decay of \(\mathrm{Pu}-239\) and find the energy released in MeV
\[
{ }_{94}^{239} \boldsymbol{P} \boldsymbol{U} \underset{{ }_{9}^{2}}{235} \circlearrowleft{\underset{2}{2}}_{4} Q
\]
- Pu-239=239.052156
- U-235=235.043923
- Alpha particle \(=4.002602\)
- Mass defect \(=239.052156-235.043923-4.002602\)
- \(=0.005631 * 931.5 \mathrm{MeV}\)
- \(=5.24 \mathrm{MeV}\)

\section*{Up to P. 250 \#23}

\section*{Ex: \#18 p. 235}
- U-233 has 92 protons, 141 neutrons
- \(92(1.007276 u)+141(1.008665 u)=234.9 u\)
- \(234.9 \mathrm{u}-233.0=1.9 \mathrm{u}\)
- \(1.9 \mathrm{u}(931.5 \mathrm{MeV})=1.77 \mathrm{GeV}\)
- \(1.77 \mathrm{GeV} / 233\) nucleons \(=7.6 \mathrm{MeV}\) per nucleon

\section*{Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{FERMIONS} & \multicolumn{3}{|l|}{matter constituents
\[
\text { spin }=1 / 2,3 / 2,5 / 2, \ldots
\]} \\
\hline \multicolumn{3}{|l|}{Leptons spin \(=1 / 2\)} & \multicolumn{3}{|l|}{Quarks spin = 1/2} \\
\hline Favor & Mass GeV/s \({ }^{2}\) & Electric charge & Flavor & Approx Mass GeVic \({ }^{2}\) & Electric charge \\
\hline \(v_{\mathrm{e}}\) electron e vectron & \[
\begin{aligned}
& <1 \times 10^{-8} \\
& 0.000511
\end{aligned}
\] & 0
-1 & \begin{tabular}{l}
u up \\
d down
\end{tabular} & \[
\begin{aligned}
& 0.003 \\
& 0.006
\end{aligned}
\] & \[
\begin{gathered}
2 / 3 \\
-1 / 3
\end{gathered}
\] \\
\hline \[
v_{\mu}{ }_{\text {neutrino }}^{\text {muon }}
\] & <0.0002 & 0 & C charm & 1.3 & 2/3 \\
\hline \(\mu\) muon & 0.106 & -1 & 5 strange & 0.1 & \(-1 / 3\) \\
\hline \(\nu_{\tau} \mathcal{\sim}_{\text {nex }}^{\text {neutrino }}\) & <0.02 & 0 & t top & 175 & 2/3 \\
\hline \(\tau\) taw & 1.7771 & -1 & b bottom & 4.3 & \(-1 / 3\) \\
\hline
\end{tabular}

 the proten in 1 6x.x. "1 ceulembl

 \(-1.67 \mathrm{krozing}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Baryons qq9 and Antibaryons षंपन \\
 \\

\end{tabular}} \\
\hline Spmed & 4.ant &  & Natre chary & \[
\mathrm{m}_{\mathrm{c}}^{2 \mathrm{ng}}
\] & 15 \\
\hline p & proton & und & 1 & -938 & \(1 / 2\) \\
\hline \(\bar{p}\) & mot & ū̄̄] & \(-1\) & 0.938 & 12 \\
\hline n & nevten & udd & 0 & 2.940 & 12 \\
\hline A & Imonds & uds & 0 & 1.116 & \(1 / 2\) \\
\hline \(\Omega^{-}\) & omega & S5s & -1 & 1872 & 3/2 \\
\hline
\end{tabular}

PROPERTIES OF THE INTERACTIONS

Matter and Antimatter
Ge ever parkkt type thert \(k\) \& corrreponding antiperick type. devot

 Ctwos some tectraly nentris
risure



\(\xrightarrow{\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B}^{0} \overline{\mathrm{~B}}^{0}}\)

force carriers
BOSONS
\begin{tabular}{|c|c|c|}
\hline Name & Mass GeV/C \({ }^{2}\) & Enctric charge \\
\hline \[
\underset{\text { photon }}{\gamma}
\] & 0 & 0 \\
\hline \(\mathbf{W}^{-}\) & 80.4 & -1 \\
\hline \(\mathrm{W}^{+}\) & 80.4 & +1 \\
\hline \(Z^{0}\) & 91.187 & 0 \\
\hline
\end{tabular}



Quarks Confined in Mesons and Baryons




 Wourt mesome gす̄ ans baryons pक̣
Residual Strong Interaction




\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Strong (color) spin = 1} \\
\hline Name & \begin{tabular}{c} 
Mass \\
CoV/C2
\end{tabular} & \begin{tabular}{c} 
Electric \\
charge
\end{tabular} \\
\hline \begin{tabular}{c} 
g \\
gluon
\end{tabular} & 0 & 0 \\
\hline
\end{tabular}

Color Charge
tech quark chem one ctimenent strong charge, abo cher "cobr chspe:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Interaction \\
Property
\end{tabular}} & \multirow[t]{2}{*}{Gravitational} & \multirow[t]{2}{*}{We. \({ }^{\text {a }}\)} & \multirow[t]{2}{*}{Blectromagnctic
\[
010
\]} & \multicolumn{2}{|c|}{Strong} \\
\hline & & & & fundamental & Aevitual \\
\hline Acts on: & Mass - Energy & Fiavor & Electric Charge & Color Charge & See Readuw strony
hetration Note \\
\hline Particies expetiending: & All & Quarks, Leptons & Electrically charged & Quarks, Gluons & Hadrons \\
\hline Partictes mediating: & Graviton
ingt ert cotetnot & \(\mathbf{W}^{+} \mathbf{W}^{-} \mathbf{Z}^{0}\) & \(\gamma\) & Gluons & Mesons \\
\hline  tar two protons in nuckeus & \[
\begin{aligned}
& 10^{-41} \\
& 10^{-41} \\
& 10^{-36}
\end{aligned}
\] & \[
\begin{aligned}
& 0.8 \\
& 10^{-4} \\
& 10^{-7}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & 25
\begin{tabular}{c} 
Not applicable \\
to hadrons
\end{tabular} & Not applicable to quarks 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
Mesons \(\mathrm{a} \overline{4}\) \\
Mores ex tevercic heleter there ars atont kes tpetet ef menert
\end{tabular}} \\
\hline srawis & Nume & Bintint & thate axic: & Comiz & sen \\
\hline \(\pi^{+}\) & plon & ud & *1 & 0.100 & - \\
\hline \[
\mathrm{K}^{-}
\] & Lson & \[
s \bar{u}
\] & \(\rightarrow\) & -0.30 & - \\
\hline \[
\rho^{+}
\] & tho & ud & -1 & arm & , \\
\hline \[
\mathrm{B}^{0}
\] & -ars & \[
\mathrm{d} \overline{\mathrm{~b}}
\] & 0 & \$299 & - \\
\hline \(\boldsymbol{\eta}_{C}\) & star & \(c \bar{c}\) & 0 & 2.000 & - \\
\hline
\end{tabular}

\section*{The Pariide Adventure \\ }
hitpe/fartich Adventure.org
This chart has been made posible by the generous support of:
us Boserterent of tnetg

Shetord Uniar Acierrato Conter
BUMLE Noustars iv.



http://CPEPweb.org

\section*{Why so many particles?}
- Could there be another underlying fundamental structure?
science_jokez • Follow



\section*{STRING THEORY SUMMARIZED:}

I JUST HAD AN AWESOME IDEA. SUPPOSE ALL MATTER AND ENERGY IS MADE OF TINY, VIBRATING "STRINGS".

OKAY. WHAT WOULD THAT IMPLY?
1 Dunno.


\section*{Standard Model. *flavor?}

FERMIONS matter consiliuents
ㄹiN \(\operatorname{spin}=1 / 2,3 / 2,5 / 2, \ldots\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Lepłons spin =1/2} & \multicolumn{3}{|l|}{Quarks spin =1/2} \\
\hline Flavor & Mass \(\mathrm{GeV} / \mathrm{c}^{2}\) & Electric charge & Flavor & Approx. Mass \(\mathrm{GeV} / \mathrm{c}^{2}\) & Electric charge \\
\hline \begin{tabular}{l}
\(\nu_{\mathrm{L}}\) lightest neutrino* \\
e electron
\end{tabular} & \[
\begin{aligned}
& (0-2) \times 10^{-9} \\
& 0.000511
\end{aligned}
\] & 0
-1 & \begin{tabular}{l}
U up \\
d down
\end{tabular} & \[
\begin{aligned}
& 0.002 \\
& 0.005
\end{aligned}
\] & \[
\begin{array}{r}
2 / 3 \\
-1 / 3
\end{array}
\] \\
\hline \begin{tabular}{l}
\(\nu_{\mathrm{M}}\) middle neutrino* \\
\(\mu\) muon
\end{tabular} & \[
\begin{gathered}
(0.009-2) \times 10^{-9} \\
0.106
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-1
\end{array}
\] & \begin{tabular}{l}
C charm \\
S strange
\end{tabular} & \[
\begin{aligned}
& 1.3 \\
& 0.1
\end{aligned}
\] & \[
\begin{array}{r}
2 / 3 \\
-1 / 3
\end{array}
\] \\
\hline \begin{tabular}{l}
\(\mathcal{V}_{\mathrm{H}}\) heaviest neutrino \({ }^{*}\) \\
\(\tau\) tau
\end{tabular} & \[
\begin{gathered}
(0.05-2) \times 10^{-9} \\
1.777
\end{gathered}
\] & 0
-1 & \begin{tabular}{l}
t top \\
b bottom
\end{tabular} & 173
4.2 & \(2 / 3\)
\(-1 / 3\) \\
\hline
\end{tabular}

\section*{Particle Processes}

These diagrams are an artist's conception. Orange shaded areas represent the cloud of gluons.
\[
n \rightarrow p e^{-} \bar{v}_{e}
\]


A free neutron (udd) decays to a proton (uud), an electron, and an antineutrino via a virtual (mediating) W boson. This is neutron \(\beta\) (beta) decay.
\[
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B}^{0} \overline{\mathrm{~B}}^{0}
\]


An electron and positron (antielectron) colliding at high energy can annihilate to produce \(\bar{B}^{0}\) and \(\mathrm{B}^{0}\) mesons via a virtual Z boson or a virtual photon.

\section*{BOSONS force carriers \\ BOSONS spin \(=0,1,2, \ldots\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Unified Electroweak spin = 1} & \multicolumn{3}{|l|}{Strong (color) spin = 1} \\
\hline Name & Mass \(\mathrm{GeV} / \mathrm{c}^{2}\) & Electric charge & Name & Mass \(\mathrm{GeV} / \mathrm{c}^{2}\) & Electric charge \\
\hline \[
\underset{\text { photon }}{\gamma}
\] & 0 & 0 & \[
\underset{\text { gluon }}{\mathbf{g}}
\] & 0 & 0 \\
\hline \(\mathbf{W}^{-}\) & 80.39 & -1 & \multicolumn{2}{|l|}{Higgs Boson} & spin \(=0\) \\
\hline \begin{tabular}{l}
\[
\mathbf{W}^{+}
\] \\
W bosons
\end{tabular} & 80.39 & +1 & Name & Mass \(\mathrm{GeV} / \mathrm{c}^{2}\) & Electric charge \\
\hline \[
z_{z \text { boson }}^{Z^{0}}
\] & 91.188 & 0 & \begin{tabular}{l}
H \\
Higgs
\end{tabular} & 126 & 0 \\
\hline
\end{tabular}

\section*{Higgs Boson}

The Higgs boson is a critical component of the Standard Model. Its discovery helps confirm the mechanism by which fundamental particles get mass.

\section*{Properties of the Interactions}
he strengths of the interactions（forces）are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances．
\begin{tabular}{|l|c|c|c|c|}
\hline Property & \begin{tabular}{c} 
Gravitational \\
Interaction
\end{tabular} & \begin{tabular}{c} 
Weak \\
Interaction \\
（Electroweak）
\end{tabular} & \begin{tabular}{c} 
Electromagnetic
\end{tabular} & \begin{tabular}{c} 
Strong \\
Interaction
\end{tabular} \\
\hline Acts on： & Mass－Energy & Flavor & Electric Charge & Color Charge \\
\hline Particles experiencing： & All & Quarks，Leptons & Electrically Charged & Quarks，Gluons \\
\hline Particles mediating： & \begin{tabular}{c} 
Graviton \\
（not yet observed）
\end{tabular} & \(\mathbf{W}^{+} \mathbf{W}^{-} \mathbf{Z}^{0}\) & \(\gamma\) & Gluons \\
\hline Strength at \(\left\{\begin{array}{llll}10^{-18} \mathrm{~m} \\
3 \times 10^{-17} \mathrm{~m}\end{array}\right.\) & \(10^{-41}\) & 0.8 & 1 & 25 \\
\hline \(10^{-41}\) & \(10^{-4}\) & 1 & 60 \\
\hline
\end{tabular}

\section*{Unsolved Mysteries}

Driven by new puzzles in our understanding of the physical world，particle physicists are following paths to new wonders and startling discoveries．Experiments may even find extra dimensions of space，microscopic black holes，and／or evidence of string theory．

Why is the Universe Accelerating？


The expansion of the universe appears to be accelerating．Is this due to Einstein＇s Cosmo－ logical Constant？If not．will experiments reveal a new force of nature or even extra （hidden）dimensions of space？

Why No Antimatter？


Matter and antimatter were created in the Big Bang．Why do we now see only matter except for the tiny amounts of antimatter that we make in the lab and obsarve in cosmic rays？

What is Dark Matter？


Invisible forms of matter make up much of the mass observed in galaxies and clusters of galaxies．Does this dark matter consist of new types of particles that interact very weakly with ordinary matter？

Are there Extra Dimensions？


An indication for extra dimensions may be the extreme weakness of gravity compared with the other three fundamental forces（gravity is so weak that a small magnet can pick up a paper clip overwhelming Earth＇s gravity）．


Elementary Particles

\section*{Structure within the Atom}

Atom Size \(\approx 10^{-10} \mathrm{~m}\)


If the proton and neutrons in this picture were 10 cm across, then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about 10 km across.

\section*{Activate the Radioactivity Activity}
- Team alpha, beta and gamma
- Design a procedure to test the penetrating power of alpha, beta, and gamma radiation
- Record your results

\section*{PROPERTIES OF THE INTERACTIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Meprity hancion} & \multirow[t]{2}{*}{Grovitational} & \multirow[t]{2}{*}{प706?} & \multirow[t]{2}{*}{Electrommentelis} & \multicolumn{2}{|c|}{Stront} \\
\hline & & & & Fundmentri & 1-tioul \\
\hline Atsen: & Mas - Lnergy & Pliswor & Bectric Churge & Color Charge &  \\
\hline Farkde esporindity & All & Quark, Leptom & Deatricaly tharged & Quarks, Gluons & Hadrom \\
\hline Ruden minging & Grawiton metert danath & \(W^{+} W^{-} \mathbf{Z}^{0}\) & \(\gamma\) & Guats & Mewons \\
\hline  the tho equllat A- twolemotom in muder & \[
\begin{aligned}
& 10^{-41} \\
& 10^{-41} \\
& 10^{-4}
\end{aligned}
\] & \[
\begin{gathered}
08 \\
10^{-4} \\
10^{-7}
\end{gathered}
\] & \[
1
\] & \begin{tabular}{l}
2 \\
60 \\
Not applicable to hadrons
\end{tabular} & Not applicable to quarks 20 \\
\hline
\end{tabular}
\(n \rightarrow p e^{-} \bar{p}_{e}\)


Trise denat
Now
errintant
 4 mirnerit 5 mory




 trumate et mate

The Fartale Adventiry
 hatpherartentifentur

Thlechurthentroms




 BInta masturn?
erve cotanver

 metmelt Panthentixtu
http://CPEPweb

\section*{TOK connection: which is the best model?}

(a)


Schwinger

(b)

(c)

(d)


\section*{Radioactivity}
- When a radioactive isotope decays, the amount remaining can be described by an exponential relation:
\[
N=N_{0} e^{-\lambda t}
\]
- Where \(\lambda\) is the decay constant \(\left(\mathrm{s}^{-1}\right)\)
- Ex: use this to find \(\lambda\) from half life
\[
\begin{array}{rlrl}
\frac{N}{N_{0}} & =e^{-\lambda t} & \ln \left(2^{-1}\right)=-\lambda T_{1 / 2} \\
\frac{1}{2} & =e^{-\lambda T_{1 / 2}} & \lambda & =\frac{-\ln 2}{-T_{1 / 2}} \\
\ln \left(\frac{1}{2}\right) & =\ln \left(e^{-\lambda T_{1 / 2}}\right) & \lambda & =\frac{\ln 2}{T_{1 / 2}}
\end{array}
\]
- Activity: start with a petri dish full of popcorn kernels. Shake and decay once every 10 s . A kernel has decayed if it is pointing down after the shake. Compare \% remaining after "40s" with theoretical:
\[
\begin{aligned}
& \lambda=\frac{\ln 2}{T_{1 / 2}}=\frac{\ln 2}{10 s}=0.069 \\
& N=N_{0} e^{-\lambda t}=100 \% e^{-0.069(40)}=6.3 \%
\end{aligned}
\]

\section*{Decay rate \(\lambda\)}
- Show that decay rate
\[
\lambda=\frac{\ln 2}{T_{1 / 2}}
\]
\[
\begin{array}{cr}
N=N_{0} e^{-\lambda t} & \ln \left(\frac{1}{2}\right)=\ln \left(e^{-\lambda T}\right) \\
\frac{N}{N_{0}}=e^{-\lambda t} & -\ln (2)=-\lambda T \\
\ln \left(\frac{N}{N_{0}}\right)=\ln \left(e^{-\lambda t}\right) & \lambda=\frac{\ln 2}{T_{1 / 2}}
\end{array}
\]


\section*{\(\underline{\text { Half Life }} \mathrm{T}_{1 / 2}\)}
- When a radioactive isotope decays, the amount remaining can be described by a half life relation:
\[
T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}
\]
- Ex 1: find the decay constant for Po-211, if it has a half life of \(0.51 \mathrm{~s} \lambda=\frac{\ln 2}{T_{1 / 2}}=1.36 \mathrm{~s}^{-1}\)

\section*{Activity Level}
- Ex: find the activity level after 2.0 s if \(\quad A=\lambda N_{0} e^{-\lambda t}\) we start with 99
atoms of Po-211
\[
A=8.9 \text { decays } / s=8.9 B q
\]

\section*{Instantaneous Activity Level}
- Ex: find the activity
level for 2350 atoms of Po-211
\[
A=\lambda N_{0} e^{-\lambda t}=\lambda N
\]
\[
A=1.36(2350)
\]
\[
A=3200 B q
\]
- Ex 1: find the amount remaining of 55 kg of plutonium in the year 3018, if it has a half life of \(8 \times 10^{7}\) a
\[
\begin{aligned}
& \lambda=\frac{\ln 2}{T_{\frac{1}{2}}}=\frac{\ln 2}{8 \times 10^{7} \times 3.16 \times 10^{7}} \\
& N=N_{0} e^{-\lambda t}=55 e^{-2.74 \times 10^{-16} \times 3.16 \times 10^{10}} \\
& =54.9995 \mathrm{~kg}
\end{aligned}
\]

Try Exercises p. 253 \#24-26

\section*{\% Remaining vs. Half-lives elapsed}
- Ex 2: Exponential decay
- Cesium 137 has a half life of 30 years. If 2.5 kg is left for 20 years, what mass will be left?

- Ex 2: Exponential decay
- Cesium 137 has a half life of 30 years. If 2.5 kg is left for 20 years, what mass will be left?
\[
\lambda=\frac{\ln 2}{T_{\frac{1}{2}}}=\frac{\ln 2}{30 \times 3.16 \times 10^{7}}
\]
\[
N=N_{0} e^{-\lambda t}
\]
\[
A=1.57 \mathrm{~kg}
\]
- Ex 3: Radioactive dating
- Cesium 137 has a half life of 30 years. If we start with 2.5 kg how much time passes until 0.32 kg remain?
\[
\lambda=\frac{\ln 2}{T_{\frac{1}{2}}}=\frac{\ln 2}{30 \times 3.16 \times 10^{7}}
\]
\[
N=N_{0} e^{-\lambda t} \quad t=\frac{\ln \left(\frac{0.32}{2.5}\right)}{-7.31 \times 10^{-10}}
\]
\[
t=89 a
\]

Try Exercises p. 255 \#27-31

\section*{Nuclear reactions}
- Atoms can be broken up (fission) or combined (fusion)


Diagram of deuterium-tritium reaction.
\[
{ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} H e+{ }^{1} n+e n e r g y
\]

\section*{Fission and Fusion}
- We can release nuclear energy by fusing together lighter nuclei

- Or by breaking apart heavier elements


- Ex: find the energy released by the fission reaction of U-235
- Ex: find the energy released by the fission reaction of U-235

\[
{ }_{0}^{1} n+{ }_{92}^{235} U \longrightarrow{ }_{36}^{92} K r+{ }_{56}^{141} B a+3\left({ }_{0}^{1} n\right)
\]

- Ex: find the energy released by the fission reaction of
U-235

\[
0+7.6 \frac{\mathrm{MeV}}{\text { nucleon }} \longrightarrow 8.6 \frac{\mathrm{MeV}}{\text { nucleon }}+8.3 \frac{\mathrm{MeV}}{\text { nucleon }}+3(0)
\]
\[
\begin{gathered}
7.6(235) \longrightarrow 8.6(92)+8.3(141) \\
1786-(791.2+1170.3)=180 \mathrm{MeV}
\end{gathered}
\]


Einstein:


\section*{Where does the energy come from?}
- Einstein showed that in a nuclear reaction, some of the mass is converted into pure energy according to:

- Ex 1: how much energy is generated from 0.5 g of Uranium?
- Ex2: how much energy is generated when 1 kg of matter meets 1 kg of antimatter?
- Ex 1: how much energy is generated from 0.5 g of Uranium?
- Ex2: how much energy is generated when 1 kg of matter meets 1 kg of antimatte?
\(E=m c^{2}\)
\(E=0.0005 \mathrm{~kg}\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}\)
\(E=4.5 \times 10^{13} J\)
\[
\begin{aligned}
& E=m c^{2} \\
& E=2.0 \mathrm{~kg}\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& \quad E=1.8 \times 10^{17} \mathrm{~J}
\end{aligned}
\]

\section*{Harnessing Nuclear Power}
- WWII arms race
- Oppenheimer: Manhattan Project
- Gadjet: test bomb July \(16^{\text {th }}\)
- Little Boy: Enriched U-235 bomb: detonated over Hiroshima Aug. 6, 1945.
- Eq: 18 kT TNT ( \(4.2 \times 10^{9} \mathrm{~J}\) per ton)
- cf May 1945 Germany
- Fat Man: Plutonium: detonated over Nagasaki Aug. 9, 1945

\section*{Modern thermonuclear weapons}
- Thermonuclear weapons use a fission reaction to trigger a fusion bomb at the core
- This briefly reproduces the temperature and pressure conditions at the sun's core
- The highest yield is for hydrogen isotopes fusing to make helium, hence "H bomb"
- Soviets 1953 test bomb
- US 1954: 15 MT

usa, Fouer! That's how you want it, huht:Then take the!

\section*{Nuclear Fission Reactors}
- To get safe, useful energy, we need:
- A chain reaction
- nb critical mass ( 50 kg Uranium, 16 kg Plutonium)
- A moderator to slow the neutrons down
- Control rods to control the rate of the chain reaction, or stop it if necessary
- The CANDU reactor uses:
- Natural uranium instead of enriched (more U-235)
- Heavy water \(\mathrm{D}_{2} \mathrm{O}\) as a moderator
- Cadmium control rods



\section*{Fusion Reactor?}
- Nuclear fusion is more powerful, and cleaner: no radioactive fuel or waste!
- Fusion reactions are difficult to contain
- The Tokamak reactor uses magnetic fields to contain a plasma and generate fusion reactions
- Still not a stable energy producer


\section*{ITER: International Thermonuclear Experimental Reactor}

\section*{ITER'S TOKAMAK - TOO HOT TO HANDLE}

Fusion scientists often describe the job of containing a hot plasma in magnetic fields as akin to holding jelly using rubber bands.

Coils for magnetic field
These superconducting magnets run both lateraily and longitudinally around the machine. They are the rubber bands that suspend the plasma in ITER's core

\section*{External heating}

In addition to the solenoid, ITER will use external radio waves and microwaves to beat the plasma to more than 100 million degrees centigrade.

\section*{Diverter *} The diverter absorbs hot helium atoms from the fusion reaction It must be able to withstand extreme temperatures and high leveis of radiation


\section*{Another option?}
- We can use a "LASER" to heat up the hydrogen and ignite the fusion reaction


\section*{CREATING A REACTION}

1
A fuel pellet* the size of a pea is made from heavy forms of hydrogen found in sea water called deuterium and tritium, as used in a hydrogen bomb

2
Fuel is dropped into a 33ft high reaction chamber made from lithium and concrete, reaching the centre in a split second, when first laser beams fire, compressing the fuel. Another, higher power laser beam then "sparks" fusion reaction.

3
The fusion reaction heats water flowing in tubes around the chamber to produce steam which can be used to drive electricity turbines


2 lb of fusion fuel is capable of producing the same amount of energy as 10,000 tonnes of fossil fuel

THE FUSION REACTION
Intense pressure and energy
causes the atoms to fuse together
 MAIN BY-PRODUCT. NO POLLUTION

NEUTRON + HEAT ENERGY


Degrees Celsius. Temperatures produced in nuclear fusion reactor

\section*{Proton-proton chain}


\section*{What should our neutrino flux be?}

\(3.85 \times 10^{26} \mathrm{~J} / \mathrm{s}\) total output
\[
\frac{3.85 \times 10^{26} J \cdot s^{-1}}{4.3 \times 10^{-12} J(2 \eta)^{-1}}
\]
\[
=1.8 \times 10^{38} \eta \cdot s^{-1}
\]

\section*{What should our neutrino flux be?}
\[
\begin{aligned}
& \quad b=\frac{L}{4 \pi d^{2}} \\
& b=\frac{1.8 \times 10^{38}}{4 \pi\left(1.5 \times 10^{11}\right)^{2}}=6.3 \times 10^{14} v \cdot m^{-2} \cdot s^{-1}
\end{aligned}
\]

\section*{The SNO Experiment}

\section*{1kton of heavy water}


Charged current interaction (through W)

Sensitive to \(v_{e}\)
\(\sqrt{5}\)


\section*{Where are the missing neutrinos?}

and athar
Curiaug Phenamena
of the
Luiveras
- When measuring solar neutrino flux, we only observe \(\sim 1 / 3\) the predicted amount

\section*{What's your flavorite?}
- McDonald found that neutrinos are like Timbits that change flavour on the way here from the Sun.


Try Exercises p. 256-9 \#32-36

\section*{Ex: 34a}
- Find the energy released in MeV :
\[
{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} n
\]

\section*{\(2.014101 u+2.014101 u=3.016029 u+1.008665 u+?\)}
0.003509 u x \(931.5 \mathrm{MeV} / \mathrm{u}=3.27 \mathrm{MeV}\)

\section*{Ex: 34b}
- Find the energy released in MeV :
\[
{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{1}^{3} H+{ }_{1}^{1} p
\]
\(2.014101 u+2.014101 u=3.016049 \mathrm{u}+1.007276 \mathrm{u}+\) ?
0.004877 u x \(931.5 \mathrm{MeV} / \mathrm{u}=4.543 \mathrm{MeV}\)

\section*{To be nuclear or not nuclear...}
- Create a presentation supporting your viewpoint
- Include pros and cons in terms of the ethical, financial, and environmental issues associated with nuclear energy

\section*{Mass Spectrometer}
- Use the electric and magnetic forces to select a mass


\section*{First: Velocity Selector}

\[
\begin{aligned}
F_{e} & =F_{B} \\
q E & =q v B \\
v & =\frac{E}{B}
\end{aligned}
\]
- Only particles with the correct velocity continue to the next stage

\section*{Next: mass spectrometry}

\[
\begin{aligned}
F & =m a \\
q v B & =\frac{m v^{2}}{r} \\
m & =\frac{q B r}{v}
\end{aligned}
\]
- We can use this to separate isotopes

\section*{Ex: Mass spectrometry question}

- An electron is accelerated from rest in a vacuum through a potential difference of 2.1 \(\mathrm{kV} . \mathrm{b})\) Deduce that the final speed of the electron is \(2.7 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} . \mathrm{c}\) )

\section*{Nuclear quantization}

- The excited Al-27 can release this energy as gamma photons either \(1 \& 2\) or 3 . Ex: find \(\lambda\) for 1
\[
\begin{gathered}
\Delta E=0.83-1.02 \mathrm{MeV}=-0.19 \mathrm{MeV} \\
E=0.19 \times 10^{6}\left(1.6 \times 10^{-19}\right) \mathrm{J} \\
E=3.04 \times 10^{-14} J=h f \\
\lambda=c / f=\frac{c h}{E} \\
\lambda=\frac{3 \times 10^{8}\left(6.63 \times 10^{-34}\right)}{3.04 \times 10^{-14}} \\
\lambda=6.54 \times 10^{-12} \mathrm{~m}
\end{gathered}
\]

See me putting in the hard work now, Momma doesn't have to call work now, I decide when I start work now, Problems hit the gym, they all work out

1. This question is about nuclear decay and ionization.
(a) A nucleus of radium-226 ( \(\left.{ }^{226}{ }_{88} \mathrm{Ra}\right)\) undergoes alpha particle decay to form a nucleus of radon (Rn).

Identify the proton number and nucleon number of the nucleus of Rn.

Proton number:
Nucleon number:
(b) Immediately after the decay of a stationary radium nucleus, the alpha particle and the radon nucleus move off in opposite directions and at different speeds.
(i) Outline the reasons for these observations. (3)

(ii) Show that the ratio \(\frac{\text { initial kinetic energy of alpha particle }}{\text { initial kinetic energy of radon atom }}\) is about 56. (3)
(c) The initial kinetic energy of the alpha particle is 4.9 MeV. As the alpha particle passes through air, it loses all its kinetic energy by causing the ionization of \(1.7 \times 10^{5}\) air molecules.
(i) State what is meant by ionization. (1)
(ii) Estimate, in joules, the average energy needed to ionize an air molecule. (2)
(d) Outline why a beta particle has a longer range in air than an alpha particle of the same energy. (3)
(Total 14 marks)
1. (a) (i) proton number: 86;nucleon number: 222 (b) (i) momentum conserved; so different speeds as different masses; opposite directions because momentum zero initially;
(ii) \(\quad k . e_{\cdot}{ }_{\alpha} \div k . e_{\cdot R n}=m \alpha v_{\alpha}{ }^{2} \div m_{R n} v_{R n}{ }^{2} /\) sensible ratio formed; \(=\) \(\left(m_{\alpha} v_{\alpha}\right)^{2} m_{R n} \div\left(m_{R n} v_{R n}\right)^{2} m_{\alpha} /\) cancellation of momentum terms; \(=\) \(m_{R n} \div m_{\alpha}=(=55.5)\);
(c) (i) removal (addition) of electron from atom/molecule;
(ii) \(\frac{4.9 \times 10^{6} \times 1.6 \times 10^{-19}}{1.7 \times 10^{5}}\)
\(4.6 \times 10^{-18} \mathrm{~J}\);
(d) beta have smaller mass / smaller / have greater speed than alpha; beta have smaller charge than alpha; therefore less likely to interact with air molecules;```

