Electrostatics

Nothing new here, we could just skip this unit...

Well, maybe not

Statics Activity

Can you charge up objects to show:

- The electroscope charge by conduction?
- The electroscope charge by induction?
- Two strips repel each other?
- Two strips attract each other?
- A strip attract a stream of water?

(+) Positive Charge	Air
	${ }_{\text {Human }}$ Skin
	Human hair
	Nylon Wool
	silk
	${ }_{\text {Aluminum }}$
	$\begin{aligned} & \text { Paper } \\ & \text { Cotton } \end{aligned}$
	Steel
	${ }_{\text {Wood }}^{\text {Ward }}$
	Hard rubber Nickel, copper
	Brass, silver
	${ }_{\text {Gel }}^{\text {Gold, platinum }}$ Actate fiber (Rayon)
	Polyester
	Cling film
$\stackrel{(-)}{ }$	Polyethylene PVC
Negative	Silicon
Charge	Teflion

Van der Graaf

- If we hold on to the dome, we can become charged
- Since our hairs all have the same charge, they repel
- Conversely, opposites attract

Static Charge

- Every atom of matter The Atom is made of a dense, +ve nucleus surrounded by -ve electrons.
- We can charge by conduction, induction, or friction

Static discharge

How much?

- Electrons and protons have the same charge magnitude: $e=1.6 \times 10^{-19} \mathrm{C}$
- Ex: a bolt of lightning transfers 10 C in a fraction of a second. How many electrons is this?

10 C

$$
n=\frac{Q}{e} \quad=\overline{1.6 \times 10^{-19} C / e^{-}}=6.25 \times 10^{19}
$$

Electric Force

- Recall gravitation: $F_{s}=\frac{G M m}{r^{2}}$
- Very similar to our Fg formula, if we replace "mass" with "charge" we have:

- Where:
- Q and q are the two charges in Coulombs
- $\mathrm{k}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$ and
- r is the distance between their centers

Ex 1:Find F

- What is the net force acting on a $8.0 \mu \mathrm{C}$ charge from the smaller $0.25 \mu \mathrm{C}$ charge?

$$
F_{1}=\frac{k Q q}{r^{2}}
$$

$$
=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} 2.5 \times 10^{-7} \mathrm{C} \cdot 8.0 \times 10^{-6} \mathrm{C}}{(7 \mathrm{~m})^{2}}
$$

$$
F_{1}=0.00037 N
$$

Electric Field

- Also related to gravitational field $\mathrm{g}=\mathrm{F} / \mathrm{m}$
- $E=F / q$ so:

$$
E=\frac{k Q}{r^{2}}
$$

- Note: this is a vector, so we can find the field at any point relative to two or more charges

Exercises

- p. 198 \#20-21
- Activity

Direction?

- The direction of electric field is defined as the direction of force on a positive test charge
- Note: field lines never cross!

(a) A single positive charge (compare Figure 21.16)

Which of the following shows the electric field for two opposite unequal point charges?
A.

C.

B.

D.

Ex 2:Find E

- What is the electric field 0.25 m to the right of a $0.5 \mu \mathrm{C}$ charge?

$$
\begin{aligned}
& 5 \times 10^{-7} \mathrm{C} \\
& \text { () } \longrightarrow \\
& E=\frac{k Q}{r^{2}} \quad E=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\left(0.5 \times 10^{-6} \mathrm{C}\right)}{(0.25 \mathrm{~m})^{2}} \\
& E=72 \mathrm{kN} / \mathrm{C}^{\text {Right }}
\end{aligned}
$$

Two positive point charges are placed 3.0 m apart as shown.

What is the magnitude of the electric field at point P midway between the two charges?

$$
\begin{aligned}
& E=\frac{k Q}{r^{2}} E_{1}=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \cdot 2.5 \times 10^{-6} \mathrm{C}}{(1.5 \mathrm{~m})^{2}} \\
& E_{1}=10 \mathrm{kN} / C \rightarrow
\end{aligned}
$$

Two positive point charges are placed 3.0 m apart as shown.

$E=\frac{k Q}{r^{2}}$

What is the magnitude of the electric field at point P midway between the two charges?

$$
\begin{aligned}
& E_{2}=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \cdot 5.8 \times 10^{-6} \mathrm{C}}{(1.5 \mathrm{~m})^{2}} \\
& E_{2}=23 \mathrm{kN} / \mathrm{C} \leftarrow \\
& E=E_{1}+E_{2}=10 \mathrm{kN} / \mathrm{C}+(-23 \mathrm{kN} / \mathrm{C}) \\
& E=E_{1}+E_{2}=13 \mathrm{kN} / \mathrm{C} \leftarrow
\end{aligned}
$$

Exercises

- p. 198 \#20-21

Get him to the Greek!

Greek Letter		Name	Equivalert	Sound When Spoken
A	α	Alpha	A	al-fah
B	β	Beta	B	bay-tah
Γ	γ	Gamma	G	gam-ah
Δ	δ	Delta	D	del-tah
E	ε	Epsilon	E	ep-si-lon
Z	ζ	Zeta	Z	zay-tah
H	η	Eta	E	ay-tay
Θ	θ	Theta	Th	thay-tah
I	1	lota	I	eye-o-tah
K	k	Kappa	K	cap-ah
A	λ	Lambda	L	lamb-dah
M	μ	Mu	M	mew
N	v	Nu	N	new
Ξ	ξ	Xi	X	zzEye
0	${ }_{0}$	Omicron	0	om-ah-cron
Π	π	Pi	P	pie
P	ρ	Rho	R	row
Σ	σ	Sigma	S	sig-ma
T	τ	Tau	T	tawh
Y	0	Upsilon	U	oop-si-lon
Φ	ϕ	Phi	Ph	figh or fie
X	\boldsymbol{x}	Chi	Ch	kigh
Ψ	$\underset{\psi}{\sim}$	Psi	Ps	sigh
Ω	${ }_{\sim}^{\circ}$	Omega	0	o-may-gah

More Electric Fie

- Also related to voltage
- If you cross a voltage V in distance d we get
$C=\frac{q}{V}=\frac{3.5 \times 10^{-6}}{6}=0.58 \overrightarrow{\mathrm{FF}_{\text {ion } d}}$
- Ex 1: A capacitor is connected to a 6 V battery. What is the capacitance if it stores a charge of $3.5 \mu \mathrm{C}$?

Supercapacitors!

How much charge?

- The capacitor in this bus charges at 1 MW of Power at 240 V for 10 seconds at each bus stop. First: how much energy?

$$
\begin{aligned}
P & =\frac{E}{t} \\
E & =P t
\end{aligned}
$$

$$
E=10^{6} \mathrm{~W} \cdot 10 \mathrm{~s}=10^{7} \mathrm{~J}
$$

How much charge?

- The supercapacitor charges at a MW of Power at 240 V for 10 seconds at each bus stop.

$$
\begin{aligned}
& V=\frac{W}{q} \\
& q=\frac{W}{V}=\frac{10^{7} J}{240 J / C}=42000 C ?!
\end{aligned}
$$

-How high?

- Potential is energy per unit charge
- Charges that "fall" across this potential difference lose potential energy and gain kinetic energy

$$
V=\frac{W}{q}
$$

$$
\frac{\Delta E_{p}}{\text { weight }}=\text { height }
$$

Capacitor activity

- Use a voltmeter to set a power supply at 2.7 V
- Measure current of capacitor as it charges, every 10sec
- Sketch a graph of its charging curve

Cathode Ray Tube (CRT)

Cathode Ray Tube (AKA electron gun)

- Ex 1 : what is the accelerating potential (AKA Voltage) if the electrons are accelerated to $0.1 c$?
cathode

accelerating anodes

focus anode
deflection coils
phosphorescent screen

$$
\begin{aligned}
& q V=-\frac{1}{2} m v^{2} \\
& V=-\frac{m v^{2}}{2 q}
\end{aligned}
$$

$$
V=2.6 \mathrm{kV}
$$

Deflection

- The greater the deflection potential, the greater the deflection

Cathode Ray Tube (CRT)

- Ex 2: How much deflection will we observe if we decrease the deflection potential to 100V?

Cathode Ray Tube (CRT)

$d=\frac{1}{4} \cdot 10 \mathrm{~cm}=2.5 \mathrm{~cm}$ 4

Exercises

- p. 162 \#1, 2, 3a-c
- Careful, electrons fall up!

Potential Energy

- Similar to gravitational potential energy we have electric potential energy
- The main difference is this can be positive or negative, depending on the charges
- ${ }^{\circledR}$ Opposites: Owe; Like Charges: Dough! ${ }^{\text {TM }}$

IT TAKES THE SAME AMOWNT OF ENERGY TO LAUNOH SOMETHING ON AN ESCAPE TRATEGTORY AW/AY FRCM EARTH AS $I T$ WOULD TO LAUNCH IT $6,000 \mathrm{k}$ UPW/ARD UNDER CONSANT $9.81 \mathrm{~m} / \mathrm{s}^{2}$ EARTH GRAVITY.

HENCE, EARTH'S WELL IS 6,000 kH DEEP.

Ex 1:Find E_{p}

- What is the potential energy of an electron in a H atom?

$$
\begin{gathered}
\text { atom? } E_{p}=\frac{k Q q}{r} \\
E_{p}=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}\left(-1.6 \times 10^{-19} \mathrm{C}\right) 1.6 \times 10^{-19} \mathrm{C}}{\left(5 \times 10^{-11} \mathrm{~m}\right)} \\
E_{p}=-4.6 \times 10^{-18} \mathrm{~J}
\end{gathered}
$$

Order of the universe in 12 steps

- $10^{25} \mathrm{~m}$
- 10^{20}
- 10^{15}
- 10^{10}
- 10^{5}
- 10^{0}
- Observable universe
- Milky Way
- Solar System
- Giant Star
- Small moon*
- Human
- *That's no moon, it's a space station!

Order of the universe

- $10^{0} \mathrm{~m}$
- 10^{-5}
- 10^{-10}
- 10^{-15}
- $10-20$
- $10-25$
- 10^{-30}
- 10^{-35}
- Human
- Bacterium
- Atom
- Nucleus
- Quark
- String?
- Quantum Gravity?
- Planck Length

Ex 2:Find E_{p}

- What is the electric potential energy of the protons in a He atom if they are 1 fm apart?

$$
\begin{gathered}
E_{p}=\frac{k Q q}{r} \\
E_{p}=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}\left(1.6 \times 10^{-19} \mathrm{C}\right) 1.6 \times 10^{-19} \mathrm{C}}{\left(10^{-15} \mathrm{~m}\right)} \\
E_{p}=0.23 \mathrm{pJ}
\end{gathered}
$$

Electric Potential

- This is analogous to field being force per unit charge
- Potential is the energy per unit charge (c.f. elevation)
- J/C \equiv Volts

$$
V=\frac{k Q}{r}
$$

Ex 3 :Find V

- What is the electric potential midway between $-2 \mu \mathrm{C}$ Cujo and $2 \mu \mathrm{C}$ Killer if they are 2 m apart?
- Cujo:

$$
V=\frac{k Q}{r}
$$

$$
V=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\left(-2 \times 10^{-6} \mathrm{C}\right)}{1 \mathrm{~m}}
$$

$$
V=-18 k V
$$

Ex 3:Find V

- Killer:

$$
\begin{gathered}
V=\frac{k Q}{r} \quad K / \text { LER } \\
V=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\left(2 \times 10^{-6} \mathrm{C}\right)}{1 \mathrm{~m}} \\
V=18 k V
\end{gathered}
$$

- Overall:

$$
V=-18 k V+18 k V=0
$$

Equipotential lines

- Always perpendicular to field

Potential Dit ${ }^{120 \mathrm{~V}}$

- We can use the potentis between two points to s since:

$$
W=q \Delta V_{e}
$$

- Ex: what is the change in potential energy as the proton moves across this capacitor?

$$
\begin{aligned}
& W=q \Delta V_{e} \\
& \quad W=1 e \cdot-240 V
\end{aligned}
$$

- Sometimes use the unit of eV for energy

$$
W=-240 \mathrm{eV}
$$

$$
1 e V=1.6 \times 10^{-19} J
$$

$$
W=-3.84 \times 10^{-17} J
$$

Energy Conservation

- If the proton has lost potential energy travelling from one plate to the other: $\Delta \mathrm{E}=0$
then it has gained kinetic energy
- What is the maximum speed of the proton?

$$
\begin{aligned}
& \Delta E=0 \\
& \Delta E_{k}=-\Delta E_{p} \\
& \Delta E_{k}=3.84 \times 10^{-17} J \\
& v=\sqrt{\frac{2 E_{k}}{m}}=\sqrt{\frac{2 \cdot 3.84 \times 10^{-17} J}{1.67 \times 10^{-27} \mathrm{~kg}}} \\
& v=214 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Exercises

- p. 166 \#1-5
- What are you doing Friday? Quiz? What's up with that?
- Chapter Review p. 166-8

More Cape ${ }^{1200}$

- We can also find the ele potential difference sinc

$$
E=-\frac{\Delta V_{e}}{\Delta r}
$$

- Ex: what is the magnitude and direction of the electric field in this capacitor?

$$
\begin{aligned}
E & =-\frac{\Delta V_{e}}{\Delta r} \\
E & =\frac{240 \mathrm{~V}}{0.0125 \mathrm{~m}} \\
E & =19.2 \mathrm{kN} / \mathrm{C} \rightarrow r i g h t
\end{aligned}
$$

More Potential Difference

- Ex: What is the electric potential difference between points P and R due to the fixed point
- charge Q ?

$$
V_{P}=\frac{k Q}{r_{P}}
$$

$$
\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \cdot 2.0 \times 10^{-7} \mathrm{C}}{0.50 \mathrm{~m}} V_{P}=3600 \mathrm{~V}
$$

$$
V_{R}=\frac{k Q}{r_{R}} \quad V_{R}=\frac{9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \cdot 2.0 \times 10^{-7} \mathrm{C}}{0.40 \mathrm{~m}}
$$

$$
V_{R}=4500 \mathrm{~V} \quad \Delta V=V_{R}-V_{P}=900 \mathrm{~V}
$$

Work done

- How much work is done in moving a charged particle?
Work done
$=q \Delta V$ for a known potential difference
$=\Delta \mathrm{E}_{\mathrm{p}}$ for point charges
*Don't use $\mathrm{W}=\mathrm{Fd}$! F is usually not constant!!
Exception? W=qEd for a uniform electric field
Ex: how much work is done in ionizing a H atom?
- Work done is change in potential energy

$$
\begin{aligned}
& W=\Delta E_{p}=k Q q\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) \\
& W=9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}\left(-1.6 \times 10^{-19} \mathrm{C}\right) .6 \times 10^{-19} \mathrm{C}\left(\frac{1}{\infty}-\frac{1}{\left(5 \times 10^{-11} \mathrm{~m}\right)}\right) \\
& W=4.6 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Ex 2: find the work done on the . $25 \mu \mathrm{C}$ charge

$W=F d ?$

$$
W=k Q q\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)
$$

$$
W=9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}\left(2.5 \times 10^{-7} \mathrm{C}\right) 8.0 \times 10^{-6} \mathrm{C}\left(\frac{1}{5 m}-\frac{1}{7 m}\right)
$$

$$
W=1.03 \times 10^{-3} \mathrm{~J}
$$

Proton Gun?!

A proton, accelerated from rest through a potential difference of $1.2 \times 10^{4} \mathrm{~V}$, is directed at a fixed $5.0 \times 10^{-6} \mathrm{C}$ charge.

(Diagram not to scale.)
a) What is the speed of the proton as it leaves the parallel plates?
(4 marks)
$\Delta E_{P}=q \Delta V \quad \Delta E_{k}=-\Delta E_{P}$
$\Delta E_{k}=-q \Delta V=-\left(1.6 \times 10^{-19} \mathrm{C}\right)(-12000 \mathrm{~V})$

$\Delta E_{k}=1.92 \times 10^{-15} J$

 $v=\sqrt{\frac{2 E_{k}}{m}}$
$12000 \mathrm{~V} \quad 0 \mathrm{~V}$
a) What is the speed of the proton as it leaves the parallel plates?

$$
v=\sqrt{\frac{2 \cdot 1.92 \times 10^{-15} \mathrm{~J}}{1.67 \times 10^{-27} \mathrm{~kg}}}
$$

$$
v=1.52 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

b) What is the distance d from the fixed charge when the proton is stopped?

$$
\begin{aligned}
& W=k Q q\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)=k Q q\left(\frac{1}{r_{2}}-0\right) \\
& W=\frac{k Q q}{r_{2}} r_{2}=\frac{k Q q}{E_{k}} \\
& r_{2}=\frac{9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \cdot 1.6 \times 10^{-19} \mathrm{C} \cdot 5.0 \times 10^{-6} \mathrm{C}}{1.92 \times 10^{-15} \mathrm{~J}} \\
& r_{2}=3.75 \mathrm{~m}
\end{aligned}
$$

Two protons are initially held at rest $2.5 \times 10^{-10} \mathrm{~m}$ apart.

If one of the protons is released as shown below, what is its speed when it is $8.0 \times 10^{-10} \mathrm{~m}$ from the fixed proton?
(7 marks)

fixed proton

$$
\begin{aligned}
W & =\Delta E_{p} \\
W & =k Q q\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)
\end{aligned}
$$

$$
W=9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}\left(1.6 \times 10^{-19} \mathrm{C}\right) 1.6 \times 10^{-19} C\left(\frac{1}{8.0 \times 10^{-10} m}-\frac{1}{2.5 \times 10^{-10} m}\right)
$$

$\Delta E_{k}=-\Delta E_{p}$

$$
v=\sqrt{\frac{2 E_{k}}{m}} \quad v=\sqrt{\frac{2 \cdot 6.34 \times 10^{-19} J}{1.67 \times 10^{-27} \mathrm{~kg}}}
$$

$$
v=2.75 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

What are the magnitude and direction of the electrostatic force on the electron while it is between the plates?
(5 marks)

$F=\frac{-1.6 \times 10^{-19} \mathrm{C} \cdot 156 \mathrm{~V}}{0.024 \mathrm{~m}}$

What are the magnitude and direction of the electrostatic force on the electron while it is between the plates?
(5 marks)
$F=-1.04 \times 10^{-15} N$

- The negative reminds us that for a negative charge, force is in the opposite direction as field
- \therefore Force is downward

Equipotential lines

- Similar to a contour map
- Shows areas of equal potential
- Always perpendicular to field lines

(a)

1. The diagram below shows some lines of equipotential in the region of an electric field.

A.

B.

C.

D.

Review

- V=potential
- Ep=potential energy
- F=force
- Q=charge
- r=radial distance
- Delta=change in...

Review

- Chapter Review Questions p. 166-168 1-15 (Bonus 16-18)
- Test Yourself p. 169-172 1-17
- Chapter 5 test Thursday?!

