Electrostatics

Nothing new here, we could just skip this unit...

Well, maybe not

Statics Activity Can you charge up objects to show:

- The electroscope charge by conduction?
- The electroscope charge by induction?
- Two strips repel each other?
- Two strips attract each other?
- A strip attract a stream of water?

(+)

Positive

Charge

Air Human skin Rabbit fur Glass Human hair Nylon Wool Silk Aluminum Paper Cotton Steel Wood Hard rubber Nickel, copper Brass, silver Gold, platinum Acetate fiber (Rayon) Polyester **Cling film** Polyethylene PVC Silicon Teflon

Van der Graaf

- If we hold on to the dome, we can become charged
- Since our hairs all have the same charge, they repel
- Conversely, opposites attract

Static Charge

- Every atom of matter is made of a dense, +ve nucleus surrounded by -ve electrons.
- We can charge by conduction, induction, or friction

The Atom

Static <u>discharge</u>

How much?

- Electrons and protons have the same charge magnitude: e=1.6×10⁻¹⁹ C
- Ex: a bolt of lightning transfers 10 C in a fraction of a second. How many electrons is this? 10C

 $= 6.25 \times 10^{19}$

Electric Force

- Recall gravitation: $F_g = \frac{GMm}{r^2}$
- Very similar to our Fg formula, if we replace "mass" with "charge" F_{ρ} = we have:

- Where:
- Q and q are the two charges in Coulombs
- k=8.99×10⁹ Nm²/C² and
- r is the distance between their centers

Ex 1:Find F

• What is the net force acting on a 8.0μ C charge from the smaller 0.25 μ C charge?

 $F_1 = \frac{kQq}{r^2}$

$F_{1} = \frac{9 \times 10^{9} Nm^{2} / C^{2} 2.5 \times 10^{-7} C \cdot 8.0 \times 10^{-6} C}{(7m)^{2}}$

$F_1 = 0.00037N$

Electric Field

- Also related to gravitational field g=F/m
- E=F/q so:

 Note: this is a vector, so we can find the field at any point relative to two or more charges

Exercises

- p. 198 #20-21
- Activity

Direction?

- The direction of electric field is defined as the direction of force on a positive test charge
- Note: field lines never cross!

(a) A single positive charge (compare Figure 21.16) Which of the following shows the electric field for two opposite unequal point charges?

©2006 Yves Pelletier (ypelletier@ncf.ca)

Ex 2: Find E

• What is the electric field 0.25 m to the right of a 0.5 μC charge?

Two positive point charges are placed 3.0 m apart as shown.

What is the magnitude of the electric field at point P midway between the two charges?

$$E = \frac{kQ}{r^2} E_1 = \frac{9 \times 10^9 Nm^2 / C^2 \cdot 2.5 \times 10^{-6} C}{(1.5m)^2}$$

 $E_1 = 10 \, kN/C \rightarrow$

Two positive point charges are placed 3.0 m apart as shown.

What is the magnitude of the electric field at point P midway between the two charges?

$$E_2 = \frac{9 \times 10^9 Nm^2 / C^2 \cdot 5.8 \times 10^{-6} C}{(1.5m)^2}$$

 $E_2 = 23 \, kN/C \leftarrow$

 $E = E_1 + E_2 = 10 \, kN/C + (-23 \, kN/C)$

 $E = E_1 + E_2 = 13 \, kN/C \leftarrow$

• p. 198 #20-21

Get him to the Greek!

Greek Letter		Name	Equivalent	Sound When Spoken
Α	α	Alpha	A	al-fah
B	β	Beta	В	bay-tah
Г		Gamma	G	gam-ah
Δ	γ δ	Delta	D	del-tah
E	3	Epsilon	E	ep-si-lon
Z	ε ζ	Zeta	E Z E	zay-tah
H	η θ	Eta		ay-tay
Θ	θ	Theta	Th	thay-tah
I	τ.	lota		eye-o-tah
K	κ	Kappa	K	cap-ah
Λ	λ	Lambda	L	lamb-dah
M	μ	Mu	M	mew
N	ν	Nu	N	new
Ξ O	ξ	Xi	X	zzEye
0	0	Omicron	Ö	om-ah-cron
Π	π	Pi	P	pie
P	ρ	Rho	R	row
Σ	σ	Sigma	S	sig-ma
Т	τ	Tau	Т	tawh
Y	υ	Upsilon	U	oop-si-lon
Φ	¢	Phi	Ph	figh or fie
X	X	Chi	Ch	kigh
Ψ	Ψ	Psi	Ps	sigh
Ω	Θ	Omega	0	o-may-gah

 Ex 1: A capacitor is connected to a 6V battery. What is the capacitance if it stores a charge of 3.5 µC?

Supercapacitors!

How much charge?

 The capacitor in this bus charges at 1 MW of Power at 240V for 10 seconds at each bus stop. First: how much energy?

$$P = \frac{E}{t}$$
$$E = Pt$$

 $E = 10^{6} W \cdot 10s = 10^{7} J$

How much charge?

 The supercapacitor charges at a MW of Power at 240V for 10 seconds at each bus stop.

VV

 $10^{7}J$ $\frac{1}{240J/C} = 42000C?!$

- How high?
 - Potential is energy per unit charge
 - Charges that "fall" across this potential difference lose potential energy and gain kinetic energy

Plate area Electric

 $\frac{deg}{weight} = height$

Capacitor activity

- Use a voltmeter to set a power supply at 2.7V
- Measure current of capacitor as it charges, every 10sec
- Sketch a graph of its charging curve

Cathode Ray Tube (CRT)

Cathode Ray Tube (AKA electron gun)

• Ex 1: what is the accelerating potential (AKA Voltage) if the electrons are accelerated to 0.1c?

 Deflection

 The greater the deflection potential, the greater the deflection

 $d \propto V$

• Ex 2: How much deflection will we observe if we decrease the deflection potential to 100V?

 $d = \frac{1}{4} \cdot 10cm = 2.5cm$

Exercises

- p. 162 #1, 2, 3a-c
- Careful, electrons fall <u>up</u>!

Potential Energy

- Similar to gravitational potential energy we have electric potential energy
- The main difference is this can be positive or negative, depending on the charges
- [®]Opposites: Owe; Like Charges: <u>Dough</u>! [™]

IT TAKES THE SAME ANOUNT OF ENERGY TO LAUNCH SOMETHING ON AN ESCAPE TRAJECTORY AWAY FROM EARTH AS IT WOULD TO LAUNCH IT 6,000 KM UPWARD UNDER CONSTANT 9.81 M/S² EARTH GRAVITY.

HENCE, EARTH'S WELL IS 6,000 M DEEP.

Ex 1:Find E_p

• What is the potential energy of an electron in a H atom? $E_{n} = \frac{kQq}{E_{n}}$

$$E_{p} = \frac{9 \times 10^{9} Nm^{2} / (-1.6 \times 10^{-19} C) 1.6 \times 10^{-19} C}{(5 \times 10^{-11} m)}$$

 $E_p = -4.6 \times 10^{-18} J$

Order of the universe in 12 steps

- 10²⁵ m
- 10²⁰
- **10**¹⁵
- **10**¹⁰
- 10⁵
- 10⁰

- Observable universe
- Milky Way
- Solar System
- Giant Star
- Small moon*
- Human
- *That's no moon, it's a space station!

Order of the universe

- 10⁰ m
- 10⁻⁵
- **10**⁻¹⁰
- **10**⁻¹⁵
- 10⁻²⁰
- 10⁻²⁵
- **10**⁻³⁰
- 10⁻³⁵

- Human
- Bacterium
- Atom
- Nucleus
- Quark
- String?
- Quantum Gravity?
- Planck Length

Download Dreamstin

Ex 2:Find E_p

The Atom

electron

shell "

 What is the electric potential energy of the protons in a He atom if they are 1fm apart?

$$E_p = \frac{kQq}{r}$$

$$E_{p} = \frac{9 \times 10^{9} Nm^{2} / (1.6 \times 10^{-19} C) 1.6 \times 10^{-19} C}{(10^{-15} m)}$$
$$E_{p} = 0.23 pJ$$

Electric Potential

- This is analogous to field being force per unit charge
- Potential is the energy per unit charge (c.f. elevation)
- J/C≡Volts

$$V = \frac{kQ}{r}$$

Ex 3:Find V

- What is the electric potential midway between -2μC Cujo and 2μC Killer if they are 2m apart?
- Cujo:

$$V = \frac{kQ}{r}$$

$$V = \frac{9 \times 10^9 Nm^2 / (-2 \times 10^{-6} C)}{1m}$$

V = -18kV

Ex 3: Find V

 $V = \frac{kQ}{kQ}$

KIL

• Killer:

$$V = \frac{9 \times 10^9 Nm^2 / (2 \times 10^{-6} C)}{1m}$$

r

V = 18kV

• Overall: V = -18kV + 18kV = 0

Equipotential lines

• Always perpendicular to field

Potential Dif

 We can use the potential between two points to s since:

$$W = q\Delta V_e$$

120 V -120 V
proton

$$(+)$$
 $(+)$

 Ex: what is the change in potential energy as the proton moves across this capacitor?

 $W = q \Delta V_{\rho}$ $W = 1e \cdot -240V$

 Sometimes use the unit of eV for energy

$$W = -240 eV$$

$$1eV = 1.6 \times 10^{-19} J$$

 $W = -3.84 \times 10^{-17} J$

Energy Conservation

 If the proton has lost potential energy travelling from one plate to the other:
 ∆E=0

then it has gained kinetic energy

What is the maximum speed of the proton?

-120 V 120 V $\Lambda E = 0$ proton $\Delta E_k = -\Delta E_n$ $\Delta E_{k} = 3.84 \times 10^{-17} J$ $v = \sqrt{\frac{2E_k}{m}} = \sqrt{\frac{2 \cdot 3.84 \times 10^{-17} J}{1.67 \times 10^{-27} kg}}$

 $v = 214 \frac{km}{2}$

Exercises

- p. 166 #1-5
- What are you doing Friday? Quiz? What's up with that?
- Chapter Review p. 166-8

• Ex: what is the magnitude and direction of the electric field in this capacitor?

$E = 19.2 \frac{kN}{C} \rightarrow right$

More Potential Difference

- Ex: What is the electric potential difference between points P and R due to the fixed point
- charge Q? Q_{SO} R_{\bullet} $Q = 2.0 \times 10^{-7} \text{ C}$

Work done

 How much work is done in moving a charged particle?

Work done

- $=q\Delta V$ for a known potential difference
- = ΔE_p for point charges
- *Don't use W=Fd! F is usually not constant!!
- Exception? W=qEd for a **uniform** electric field
- Ex: how much work is done in ionizing a H atom?

 Work done is change in potential energy

$$W = \Delta E_p = kQq \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$

$$W = 9 \times 10^9 \, Nm^2 / C^2 \left(-1.6 \times 10^{-19} \, C \right) 1.6 \times 10^{-19} \, C \left(\frac{1}{\infty} - \frac{1}{(5 \times 10^{-11} \, m)} \right)$$

 $W = 4.6 \times 10^{-18} J$

Ex 2: find the work done on the .25 μ C charge

$$W = 9 \times 10^9 \, \frac{Nm^2}{C^2} \left(2.5 \times 10^{-7} \, C \right) 8.0 \times 10^{-6} \, C \left(\frac{1}{5m} - \frac{1}{7m} \right)$$

 $W = 1.03 \times 10^{-3} J$

Proton Gun?!

A proton, accelerated from rest through a potential difference of 1.2×10^4 V, is directed at a fixed 5.0×10^{-6} C charge.

a) What is the speed of the proton as it leaves the parallel plates?

(4 marks)

 $\Delta E_P = q \Delta V \quad \Delta E_k = -\Delta E_P$ $\Delta E_k = -q \Delta V = -(1.6 \times 10^{-19} C)(-12000V)$

A proton, accelerated from rest through a potential difference of 1.2×10^4 V, is directed at a fixed 5.0×10^{-6} C charge.

a) What is the speed of the proton as it leaves the parallel plates?

(4 marks)

$$v = \sqrt{\frac{2 \cdot 1.92 \times 10^{-15} J}{1.67 \times 10^{-27} kg}}$$
$$v = 1.52 \times 10^{6} m/s$$

b) What is the distance *d* from the fixed charge when the proton is stopped?

$$W = kQq \left(\frac{1}{r_2} - \frac{1}{r_1}\right) = kQq \left(\frac{1}{r_2} - 0\right)$$
$$W = \frac{kQq}{r_2} \quad r_2 = \frac{kQq}{E_k}$$

$$r_2 = \frac{9 \times 10^9 \, Nm^2 C^{-2} \cdot 1.6 \times 10^{-19} \, C \cdot 5.0 \times 10^{-6} \, C}{1.92 \times 10^{-15} \, J}$$

 $r_2 = 3.75m$

Two protons are initially held at rest 2.5×10^{-10} m apart.

$$+$$
 $+$ $+$ $2.5 \times 10^{-10} \text{ m} \rightarrow$

If one of the protons is released as shown below, what is its speed when it is 8.0×10^{-10} m from the fixed proton? (7 marks)

 $W = 9 \times 10^9 \, Nm^2 / C^2 \left(1.6 \times 10^{-19} \, C \right) 1.6 \times 10^{-19} \, C \left(\frac{1}{8.0 \times 10^{-10} \, m} - \frac{1}{2.5 \times 10^{-10} \, m} \right)$

 $\Delta E_k = -\Delta E_n$

 $v = 2.75 \times 10^4 \, m/_{s}$

What are the magnitude and direction of the electrostatic force on the electron while it is between the plates? (5 marks)

$$F = qE$$

$$F = qE = \frac{q\Delta V}{d}$$

$$F = \frac{-1.6 \times 10^{-19} C \cdot 156V}{0.024m}$$

What are the magnitude and direction of the electrostatic force on the electron while it is between the plates? (5 marks)

$$F = -1.04 \times 10^{-15} N$$

- The negative reminds us that for a negative charge, force is in the opposite direction as field
- ∴ Force is downward

Equipotential lines

- Similar to a contour map
- Shows areas of equal potential
- Always perpendicular to field lines

LIVEWIRE

Leslie Willis was the rudest radio star in Metropolis, filling her broadcasts with rants against Superman. But the Man of Steel gave her the jolt of her life! As a thunderstorm raged at a concert promoting her radio show, a bolt o lightning passed through Superman's body and turned Leslie into Livewire a being of pure electrical energy!

HIGH-VOLTAGE VILLAIN Livewire is composed entirely of living electricity. She can control electric power in all its forms, making her a high-powered villain who can zap Superman silly!

SUP

· Livew

each us

· Livew

rogues

Quinn

Batgirl up her

BRAINIAC

Livewire caused a shock when she saved the world! When Brainiac was about to press a button that would detonate every atomic bomb on Earth, Livewire used her powers to short-circuit the nuclear nightmare!

SUDDEN APPEARANCES are easy

86

1. The diagram below shows some lines of equipotential in the region of an electric field.

Which graph best shows the magnitude *E* of the electric field strength along the line XY?

Review

- V=potential
- Ep=potential energy
- F=force
- Q=charge
- r=radial distance
- Delta=change in...

Review

- Chapter Review Questions p. 166-168
 1-15 (Bonus 16-18)
- Test Yourself p. 169-172 1-17
- Chapter 5 test Thursday?!