Optics

Circles

 Or
Spiral?

Which is darker?
 A or B?

What color is the dress?

WHITE DRESS,
BUE SNADOW

Look at the chart and say the COLOR not the word

Left - Right Conflict
Your right brain tries to say the color but your left brain insists on reading the word

Confused yet?

This image is hosted on ebaumsworld.com

Ray Diagrams

- Everybody loves Ray diagrams!

Law of Reflection

- Incident angle $=$ Reflected angle

- We can use this to draw ray diagrams and locate the image of an object

- The image can be located by tracing reflected rays back to where they seem to come from

- Ex 1: use a ray diagram to locate the image
- which eye is the image winking with?

Exercises

- P. 214 \#2,5,6
- Lab p. 215: only water!

Snell's Law: Lab p. 215

Retroreflector on the moon!

- Three right angles should cause the "laser" to bounce back directly

Dispersion

- Different wavelengths refract more

Scattering

- Why is the sky blue?

Rayleigh scattering

Sky appears bfue

Sunset appears red

The amazing "reappearing penny"

IF I MAKE FUN OF PEOPLE, ITRAIN THEMNOT TO TEL. ME WHEN THEY HANE THOSE MON'ENTS. AND I MISS OUT ON THE FUN.
"DIET COKE AND MENTOS THING"? WHAT'S THAT?

OH MAN! COME ON, WERE GOING TO THE GROCERY STORE. WHY?

YOU'RE ONEOF TODAY'S UCKY

Chocolate Lab

- According to the microwave, the frequency is 2450 MHz
- The distance between melt spots will be half the wavelength
- Ex: 7 cm between antinodes

Refraction of light

- When light enters a slower medium, rays are bent towards the normal
- The greater the difference in speed, the more rays are bent:
- The speed ratio in the medium is written as " n "
- This is also called the index of refraction, and can be calculated as:

$$
n=\frac{c_{0}}{c}
$$

Snell's Law: Lab p. 215 G1

- Trace out dish, measure center, draw normal, premeasure incident angles
- Then fill dish half full and measure refracted angles
- Graph $\sin \theta_{\mathrm{i}}$ vs $\sin \theta_{\mathrm{r}}$: find the slope
- No Questions
- Conclusion: include slope, improvements

Snell's Law: Lab p. 215

Snell's Law

- When light enters a slower medium, rays are bent towards the normal

- The greater the difference in speed, the more rays are bent:

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

- Recall n can be calculated as:

$$
n=\frac{c_{0}}{c}
$$

Come listen and learn, I've a story I tell
I sing of the genius of Willebrord Snell
A mathematician who lived long ago
In the Netherlands where the Rhine river does flow
He set for his mind occupations of worth
Improved navigation and measured the Earth!
He gave us the sine law, that wonderful guy
And he made more precise calculation of pi!
Singin' $n_{1} \sin \theta_{1}$ (hey hey hey) $=n_{2} \sin \theta_{2}$, hip hooray!

His greatest feat came in Sixteen Twenty-one When optics as science was really begun!

While flashes of lightning illumined his page
He wrote down Snell's law, his great gift to the age!
So if you wear glasses or like to fry ants
Be grateful your lenses were not made by chance!
Astronomers hail him with each new-found star!
Microscopists toast him from each sleazy bar!
Singin' $n_{1} \sin \theta_{1}$ (hey hey hey) $=n_{2} \sin \theta_{2}$, hip hooray!

Now some credit Harriot, others Descartes
Both studied refraction, and both were real smart.
But we prefer Willebrord van Roijen Snell
He laid down the law, and he did it darn well!
Singin' $n_{1} \sin \theta_{1}$ (hey hey hey) $=n_{2} \sin \theta_{2}$, hip hooray!

Where do you aim the spear?

- Given that the hunter observes the light exiting the water at an angle of 35°, can we calculate to find the actual position of the fish?

$$
\begin{aligned}
\frac{n_{1}}{n_{2}} & =\frac{\sin \theta_{2}}{\sin \theta_{1}} \\
\sin \theta_{1} & =\frac{n_{2} \sin \theta_{2}}{n_{1}}
\end{aligned}
$$

Where do you aim the spear?

$$
\begin{gathered}
\sin \theta_{1}=\frac{n_{2} \sin \theta_{2}}{n_{1}} \quad \theta_{1}=\sin ^{-1}\left(\frac{1 \sin 35}{1.33}\right) \\
\theta_{1}=\sin ^{-1}\left(\frac{n_{2} \sin \theta_{2}}{n_{1}}\right)
\end{gathered}
$$

Finish labs, hand them in Exercises p. 218 \#1-4

Ex: find n

- Light encountering a block of glass at 18.5 degrees goes in at 12 degrees find the index of refraction for this glass
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

$$
n_{2}=\frac{n_{1} \sin \theta_{1}}{\sin \theta_{2}}
$$

$$
n_{2}=\frac{1.00029 \sin 18.5^{\circ}}{\sin 12^{\circ}}
$$

Total Internal Reflection

- What happens as we increase the angle of incidence for light going into a less optically dense medium?
- The refracted ray gets bent further and further from the normal.

As the ande of incidence increases from 0 to greater angles ...

ritical An

Total internal reflection
 reflection is for a refraction angle of 90°

- Solving Snell's law for critical angle gives:

$$
\begin{aligned}
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& n_{1} \sin \theta_{1}=n_{2} \\
& \sin \theta_{1}=\frac{n_{2}}{n_{1}} \quad \theta c=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right) \\
& \theta c=\sin ^{-1}\left(\frac{1}{1.5}\right) \quad \theta c=42^{\circ}
\end{aligned}
$$

Microwave speed of light

- Measure the distance between two antinodes of this standing wave
- Double this to get wavelength
- Use the wave equation to find

Speed of light?

- $\mathrm{vl}=3.43 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$
- $\mathrm{v} 2=1.35 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$
- $\mathrm{v} 3=3.06 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$
- $\mathrm{v} 4=2.57 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$
- $\mathrm{v} 5=3.68 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$
- $v($ ave $)=2.82 \mathrm{E} 8 \mathrm{~m} / \mathrm{s}$

Which color refracts more?

Exercises p. 221 \#1-7 Optics quiz tomorrow:

3 MC : do you know the difference between diffraction, refraction, reflection? 1 WR: Snell's Law question

Dispersion

- Different wavelengths are refracted different amounts so we get:

Primary colors

Scattering

- Blue light is scattered by the atmosphere so the sky looks blue, sunsets look red

Exercises p. 221 \#1-4 Start p. 237 Test Yourself! Quiz tomorrow
Waves/optics Test 15th
Final Exam 25th on Everything!!!!!!!!! Yes Shelby: Everything.

Spectroscopy Activity

- Do diagrams for the spectra of: Incandescent light
Fluorescent light
Nitrogen gas
Argon gas
"LASER" light
- Then continue review questIons!

Test Yourself p. 237

- Choose 5 Chapter Review Page 274
- Open book Quizzam tomorrow
- Start Modern Physics next week
- Final Exam Jan 23

Path difference

Path difference

- If waves travel a path difference of one wavelength (or any multiple n) we get constructive interference
- Ex: find the path difference for these speakers to get maximum sound intensity of A

$$
v=f \lambda \quad \lambda=\frac{v}{f}=\frac{330}{440} \quad 0.75 m
$$

Single slit diffraction

- We find the waves with wavelength λ don't just spread out, they reach a minimum at angle θ after passing through a thin slit of width b

(

- Ex 1: find the angle for the first diffraction minimum for a red laser passing through a 0.3 mm slit

A note for calculations:

The small angle approximation allows $\sin \theta=\tan \theta=\theta$, and thus we can rewrite the first equation as $\theta=y / D$. This allows θ to be determined from simple linear measurements from experimental apparatus.

$\theta=\frac{\lambda}{b}=\frac{700 \times 10^{-9}}{0.0003 \mathrm{~m}}=0.0023 \mathrm{rad}$

Double slit or Diffraction Grating

- For constructive interference we want a path difference of one wavelength, or any multiple

- Ex: find the angle from the central maximum to the next, for 600 rulings per mm , and 680 nm light
- Ex: find the angle from the central maximum $(\mathrm{n}=0)$ to the next $(\mathrm{n}=1)$

- Ex: find the spacing of the lines in your diffraction grating

$n \lambda=d \sin \theta$
 $$
d=\frac{n \lambda}{\sin \theta}
$$

$$
d=\frac{(1) 680 \times 10^{-9}}{\sin 21} \quad=1.9 \mu m
$$

Single or double or both?

- If each slit has a significant width, we get both!

Thin film interference

- For film thickness d, index of refraction n. Assuming one phase change for reflection off the surface we get constructive interference for:

- Ex: find the thickness of a film with $\mathrm{n}=1.43$ when 650 nm light gives constructive interference
- For thin film interference, we get destructive interference for :

- Ex: find the thickness of an $\mathrm{n}=1.55$ film with "no reflection" for 440nm light

Resolution

Rayleigh criterion

- The three possibilities are well resolved, not resolved or just resolved
- The Rayleigh criterion applies to just resolved:

Rayleigh criterion

Ex: find a for $\mathrm{d}=17 \mathrm{~m}$

 FOR RESOLUTION

The distance between two LEDs, a is varied until a student, at distance d away, can barely resolve the two LEDs. The ratio a / d is compared to $1.22 \mathrm{\lambda} / \mathrm{x}$, where $\boldsymbol{\lambda}$ is the average wavelenght of visible light $\left(5.50 \cdot 10^{-4} \mathrm{~mm}\right)$, and x is the pupil diameter (4 mm).
$\theta=1.22 \frac{\lambda}{b}=1.22 \frac{550 \times 10^{-9}}{0.004}=1.68 \times 10^{-4}$

The distance between two LEDs, a is varieo at distance d away, can barely resolve the tv The ratio a/d is compared to $1.22 \mathrm{\lambda} / \mathrm{x}$, whe
average wavelenght of visible light ($5.50 \cdot 10$ average wavelenght of vis
the pupil diameter $(4 \mathrm{~mm})$.

Ex: find a for $\mathrm{d}=17 \mathrm{~m}$

$$
s=r \theta=17 \times 1.68 \times 10^{-4}=2.9 \mathrm{~mm}
$$

 $s=r \theta=17 \times 1.68 \times 10^{-4}=2.9 \mathrm{~mm}$

 $s=r \theta=17 \times 1.68 \times 10^{-4}=2.9 \mathrm{~mm}$}
Ex: find b for Legolas to resolve 10 cm detail from 24 km

420
HE TWO TOWERS

$$
\begin{aligned}
& \theta=\frac{s}{r}=\frac{0.1}{24000}=4.2 \times 10^{-6} \\
& \theta=1.22 \frac{\lambda}{b} \quad b=1.22 \frac{\lambda}{\theta}
\end{aligned}
$$

There was a silence in the empty fields, and Gimli could hear th moving in the grass.
'Riders!' cried Aragorn, springing to his feet. 'Many riders on steeds are coming towards us!'
'Yes,' said Legolas, 'there are one hundred and five. Yellow is their and bright are their spears. Their leader is very tall.'
Aragorn smiled. 'Keen are the eyes of the Elves,' he said.
'Nay! The riders are little more than five leagues distant,' said Leg 'Five leagues or one,' said Gimli, 'we cannot escape them in this land. Shall we wait for them here or go on our way?'
'We will wait,' said Aragorn. 'I am weary, and our hunt has failed at least others were before us; for these horsemen are riding back d
the orc-trail. We mav get newe from tham

$$
=1.22 \frac{550 \times 10^{-9}}{4.2 \times 10^{-6}}=0.16 \mathrm{~m}!
$$

Ex: find the critical angle for Keck at 500nm

Resolvance R

A diffraction grating with N slits can resolve spectral lines that are apart $\Delta \lambda$ where m is the order of diffraction

$$
R=\frac{\lambda}{\Delta \lambda}=m N
$$

Example: a) what is the resolvance necessary to resolve two lines in the sodium spectrum with wavelengths 589.00 and 589.59 nm ?

Example: b) how many diffraction lines are necessary to resolve these for second order spectrum?

$$
R=\frac{\Delta \lambda}{\lambda}=m N
$$

$$
N=\frac{R}{m}=\frac{999}{2}=500 \text { lines }
$$

Intensity

Intensity

- This is related to brightness of light, or loudness of sound
- Measured as Watts per square meter
- Intensity is proportional to:

$$
I \propto A^{2} \quad I \propto x^{-2}
$$

- Ex: The total power output of the Sun is 386 YottaWatts. What is the intensity here?
- Ex: The total power output of the Sun is 386 septillion Watts. What is the intensity here?

$$
\begin{gathered}
I=W \cdot m^{-2} \\
I=\frac{385 \cdot 10^{24} W}{4 \pi\left(1.5 \times 10^{11} m\right)^{2}} \\
I=1360 W \cdot m^{-2}
\end{gathered}
$$

- Ex: Mars is 1.524 AU from the Sun. What is the Intensity there?
$I \alpha x^{-2}$

$$
\begin{gathered}
I_{M}=I_{E}(1.524)^{-2} \\
I=1361 \mathrm{~W} \cdot \mathrm{~m}^{-2} / 2.32 \\
I=590 \mathrm{~W} \cdot \mathrm{~m}^{-2}
\end{gathered}
$$

- Ex: Sheldon turns up his amplifier to get thrice the sound amplitude from his speaker. By what factor has the sound intensity changed??

$I \alpha A^{2}$

$$
\begin{gathered}
I_{2}=I_{1} 3^{2} \\
I_{2}=9 I_{1}
\end{gathered}
$$

Standing waves

- What is the fundamental ($1^{\text {st }}$ harmonic) frequency for a 52 cm long open tube?

$$
\begin{aligned}
v & =f \lambda \\
f & =\frac{v}{\lambda}=\frac{320}{1.04}=308 H z
\end{aligned}
$$

- $2^{\text {nd }}$ harmonic?

$$
f=\frac{v}{\lambda}=\frac{320}{0.52}=616 H z
$$

Closed at one end?

- What is the frequency for the $3^{\text {rd }}$ harmonic for this pipe with a length of 1.5 m ?

$$
\frac{5 \lambda}{4}=L
$$

कu Thentie: Thadrab

$\lambda=\frac{4}{5} L=\frac{4}{5} 1.5 m=1.2 m$
$f=\frac{v}{\lambda}=\frac{315}{1.2}=267 \mathrm{~Hz}$

Ex: Guitar string

- What is the wavelength for the $3^{\text {rd }}$ harmonic for this guitar string with a length of 0.75 m ?

Third Harmonic: Standing Wave on String
$\frac{3 \lambda}{2}=L$

_ Snapshot of string at fixed time

- Node
- - Snapshot of string at later time
- Antinode

$$
\lambda=\frac{2}{3} L=\frac{2}{3} 0.75 \mathrm{~m}=0.50 \mathrm{~m}
$$

Polarization

Direction of oscillation

- Since E and M fields are vectors, E-M waves have a direction of oscillation as well as a direction of motion

Polarizating Filters

- We can allow only light polarized in a particular direction
- When unpolarized light passes through a filter, its intensity is reduced by 50%

Polarizating Filters

- We define polarization as the direction of the electric field oscillation

Magnetic field
(in x-z plane)

Malus' Law

The intensity of light passing through a filter with its axis at an angle θ from the polarization direction is:

$$
I=I_{0} \cos ^{2} \theta
$$

Ex: find the intensity

- Unpolarized light passes through two polarizing filters oriented 60 degrees relative to each other:

$$
\begin{aligned}
& I=I_{\mathrm{O}} \cos ^{2} \theta \\
& I=0.5 \times I_{0}(\cos 60)^{2} \\
& I=1 / 2 \times I_{0}(1 / 2)^{2} \quad I=1 / 8 I_{0}
\end{aligned}
$$

p. 146 \#30
p. 148 \#31

Start Review p. 149
IA Research Question done this week!?

final waves review

- Test Yourself p. 178 q's1-7, m.c. 1-5

