### Thermal Energy

### What is Internal Energy?

- Individual molecules making up a body have energy
- Even in a solid, the vibration of the molecules give them kinetic energy
- The electromagnetic force between the molecules give them potential energy
- Internal energy is a combination of this kinetic and potential energy



#### Temperature

- Temperature is based on the average kinetic energy of the molecules
- T is therefore independent of mass
- We define 0°C as the freezing point of water,
   100°C as its boiling point
- The Kelvin scale defines 0K as absolute zero: no molecular motion!
- To convert:  $0 \text{ K} = -273 \, ^{\circ}\text{C}$  so  $\text{K} = ^{\circ}\text{C} + 273 \, ^{\circ}$

### Thermal Energy

- Thermal energy (Heat) is defined as the transfer of internal energy by:
  - conduction
  - convection, or
  - radiation







Heat Q can be found by

$$Q=mc\Delta T$$

where c is a substance's specific heat capacity

Ex 1: How much heat is necessary to bring 0.100L of water from 40°C to 100°C?

Q=mc\DT =0.100kg(4200J/kg\C)60\C =25 kJ • What is the power of a hot plate that heats 0.100L of water in 2.5 minutes?

$$Q=mc\Delta T$$

$$P = \frac{mc\Delta T}{t}$$

$$P = \frac{0.10kg(4200)80}{150}$$

$$P = 224W$$

• What is the latent heat of vaporization if 25 mL of water are "missing" after 4 minutes of boiling?

Q=mL
$$P = \frac{mL}{t} \qquad L = \frac{Pt}{m}$$

$$L = \frac{224(240)}{0.025}$$

$$L = 2.2 \times 10^{6} J \cdot kg^{-1}$$

- Heating up lab p. 143 (Gore)
- Choice of heating devices:
  - Bunsen burner
  - Hot plate
  - Heat lamp?
  - Power calculations
  - Add: measure mass before and after, find heat of vaporization
- Evaluation: state results, sources of error, possible improvements

### The mole

Avogadro's number tells us how many particles in 12 grams of carbon 12



 $6.022 \times 10^{23}$ 

Ex: how many molecules are in one drop of water? a) $10^{19}$ 

b) $10^{21}$ 

c) $10^{23}$  d) $10^{25}$ 

### Avogadro's number

 $6.023 \cdot 10^{23}$ 

- Ex: what is the mass of one mole of water?
- 16+1+1=18g
- What is the mass of water that has the double the number of molecules as 11g of quicksilver?
- Hydrargyrum?
- Hg?

Ex: how many water molecules are in one drop of water (0.1mL) if the density of the water is 1.01g/mL (kg/L)?



$$0.1mL \times \frac{1.01g}{mL} \times \frac{1mol}{18g} \times \frac{6.022 \times 10^{23} \, molecules}{1mol}$$

 $3.4 \times 10^{21}$  molecules

Choose 6 questions 1-12 p. 125

## We can use E conservation to solve problems involving heat



Ex 2: How much heat is generated when we strike an anvil with a 25 kg hammer at  $13 \text{m s}^{-1}$ ?

 $E_k = 1/2 \text{mv}^2$ 

 $=0.5(25)13^2$ 

=2100J

Try 3-4 p. 69

## We can use E conservation to solve problems involving heat

Ex 2: How much 75 °C aluminum will it take to heat 100 mL room temperature water to 65 °C?

$$\Delta E=0$$

$$m_a c_a \Delta T_a = -m_w c_w \Delta T_w$$

$$m_{a=}$$
?  
 $c_{a=}903 J/kg$  °C  
 $\Delta T_{a=}-10$  °C  
 $m_{w=}0.100 kg$   
 $c_{w=}4180 J/kg$  °C  
 $\Delta T_{w}=45$  °C

$$m_a c_a \Delta T_a = -m_w c_w \Delta T_w$$

$$m_a = \frac{-m_w c_w \Delta T_w}{c_a \Delta T_a}$$

$$m_{a} = \frac{-0.10kg \cdot 4180 \frac{J}{kg} \cdot C \cdot 45 \cdot C}{903 \frac{J}{kg} \cdot C \left(-10 \cdot C\right)}$$

$$m_{a} = 2.1kg$$

### Ex 3: "Mystery" object

 what is the specific heat of a substance that decreases the temperature of 200mL 85 °C water by 5°C when you drop in a 0.045kg block at 20°C? What is it?

$$m_{x=}0.045 kg$$
 $c_{x=}?$ 
 $\Delta T_{x}=60\,^{\circ}C$ 
 $m_{w=}0.2 kg$ 
 $c_{w=}4200 J/kg^{\circ}C$ 
 $\Delta T_{w}=-5^{\circ}C$ 
 $Q_{x}=-Q_{w}$ 
 $m_{x}c_{x}\Delta T_{x}=-m_{w}c_{w}\Delta T_{w}$ 

$$c_{x} = \frac{-m_{w}c_{w}\Delta T_{w}}{m_{x}\Delta T_{x}}$$

$$c_{x} = \frac{-0.2kg \cdot 4200 \frac{J}{kg} \cdot C \cdot (-5 \cdot C)}{0.045kg \cdot 60 \cdot C}$$

$$c_x = 1600 \frac{J}{kg} \circ C$$

### Ex 3: "Mystery" object

• what is the specific heat of a substance that decreases the temperature of 200mL 77.6 °C water to 71.4°C when you drop in a 0.045kg block at 21.5°C? What is it?

$$m_{x=}0.0621 kg$$
 $c_{x=}?$ 
 $\Delta T_{x}=49.9 \,^{\circ}C$ 
 $m_{w=}0.2 kg$ 
 $c_{w=}4200 J/kg \,^{\circ}C$ 
 $m_{x}c_{x}\Delta T_{x}=-m_{w}c_{w}\Delta T_{w}$ 
 $\Delta T_{w}=-6.4 \,^{\circ}C$ 

|              | kJ   |            |       |           |      |              |      |
|--------------|------|------------|-------|-----------|------|--------------|------|
| Aluminum     | 0.91 | Gold       | 0.13  | Osmium    | 0.13 | Tantalum     | 0.14 |
| Antimony     | 0.21 | Hafnium    | 0.14  | Palladium | 0.24 | Thallium     | 0.13 |
| Barium       | 0.2  | Indium     | 0.24  | Platinum  | 0.13 | Thorium      | 0.13 |
| Beryllium    | 1.83 | Iridium    | 0.13  | Plutonium | 0.13 | Tin          | 0.21 |
| Bismuth      | 0.13 | Iron       | 0.45  | Potassium | 0.75 | Titanium     | 0.54 |
| Cadmium      | 0.23 | Lanthanum  | 0.195 | Rhenium   | 0.14 | Tungsten     | 0.13 |
| Calcium      | 0.63 | Lead       | 0.13  | Rhodium   | 0.24 | Uranium      | 0.12 |
| Carbon Steel | 0.49 | Lithium    |       | Rubidium  | 0.36 | Vanadium     | 0.39 |
| Cast Iron    | 0.46 | Lutetium   | 0.15  | Ruthenium | 0.24 | Yttrium      | 0.3  |
| Cesium       | 0.24 | Magnesium  | 1.05  | Scandium  | 0.57 | Zinc         | 0.39 |
| Chromium     | 0.46 | Manganese  | 0.48  | Selenium  | 0.32 | Zirconium    | 0.27 |
| Cobalt       | 0.42 | Mercury    | 0.14  | Silicon   | 0.71 | Wrought Iron | 0.5  |
| Copper       | 0.39 | Molybdenum | 0.25  | Silver    | 0.23 |              |      |
| Gallium      | 0.37 | Nickel     | 0.44  | Sodium    | 1.21 |              |      |
| Germanium    | 0.32 | Niobium    | 0.27  | Strontium | 0.3  |              |      |

$$c_{x} = \frac{-m_{w}c_{w}\Delta T_{w}}{m_{x}\Delta T_{x}}$$

$$c_{x} = \frac{-0.2kg \cdot 4200 \frac{J}{kg} \circ C \cdot (-6.4 \circ C)}{0.0621kg \cdot 49.9 \circ C}$$

$$c_x = 1600 \frac{J}{kg} \circ C$$

- Mystery metal activity: 1 write-up for each group of 2-3 people
  - Measure 200 mL of cold water into your styrofoam calorimeter
  - Measure the initial temperature of the water and metal
  - Drop the hot metal into the water and seal the container
  - After 2 minutes, measure final temperature, then calculate "c"

#### Ex 4: unknown T!

 what will the final temperature be if you drop a 0.45kg block of copper at 340°C into 0.750 L room temperature water?

$$m_{c=}0.45 \text{kg}$$
 $c_{c=}385 \text{J/kg} ^{\circ}\text{C}$ 
 $\Delta T_{c=}?$ 
 $Q_{c} = -Q_{w}$ 
 $m_{w=}0.75 \text{kg}$ 
 $c_{w=}4180 \text{J/kg} ^{\circ}\text{C}$ 
 $m_{c} c_{c} \Delta T_{c} = -m_{w} c_{w} \Delta T_{w}$ 
 $\Delta T_{w} = ?$ 
 $m_{c} c_{c} \left(T_{f} - T_{ci}\right) = -m_{w} c_{w} \left(T_{f} - T_{wi}\right)$ 

$$m_c c_c T_f - m_c c_c T_{ci} = -m_w c_w T_f + m_w c_w T_{wi}$$

$$m_{c}c_{c}T_{f} + m_{w}c_{w}T_{f} = m_{c}c_{c}T_{ci} + m_{w}c_{w}T_{wi}$$

$$(m_{c}c_{c} + m_{w}c_{w})T_{f} = m_{c}c_{c}T_{ci} + m_{w}c_{w}T_{wi}$$

$$T_{f} = \frac{m_{c}c_{c}T_{ci} + m_{w}c_{w}T_{wi}}{m_{c}c_{c} + m_{w}c_{w}}$$

$$\begin{array}{ll} \rm m_{c=}0.45kg \\ c_{c=}385 \rm J/kg \, ^{o}C \\ \Delta T_{c=}? & T_{f} = \frac{m_{c}c_{c}T_{ci} + m_{w}c_{w}T_{wi}}{m_{c}c_{c} + m_{w}c_{w}} \\ c_{w=}4180 \rm J/kg \, ^{o}C \\ \Delta T_{w} = ? & \end{array}$$

$$T_f = \frac{0.45kg \cdot 385J/kg^{\circ}C \cdot 340^{\circ}C + 0.75kg \cdot 4180J/kg^{\circ}C \cdot 20^{\circ}C}{0.45kg \cdot 385J/kg^{\circ}C + 0.75kg \cdot 4180J/kg^{\circ}C}$$

$$T_f = 37^{\circ}C$$

#### Do questions 7-11 p. 73











### Change of State



- Chemical bonds have a corresponding energy:
  - Heat of <u>fusion</u>: how much energy is required to melt one kilogram of a material
  - Heat of vaporization: how much energy is required to vaporize one kilogram of a material

# What's the difference between evaporation and boiling?





Gas

Condensation

Liquid

Freezina

Solid

## Ex: how much heat to vaporize 250mL room temperature water given SLH=2260kJkg<sup>-</sup>1

• First, bring water to boiling point

Q= $mc\Delta T$ Q=0.25(4180)80Q=83.6kJ

- Next, vaporization
- Q=mL
- Q=0.25(2260)=565kJ
- Total=649kJ

#### Do questions 12-14 p. 75

#### Phase Change

- Q=mL
- Ex: how much heat to melt a 5.5 kg block of ice?

$$Q = 5.5kg(3.35 \times 10^5 J \cdot kg^{-1})$$

$$Q = 1.8MJ$$

- Try 12-14 p. 75
- Also finish q's p. 14-16 & p. 59-65



#### Pressure



- p=F/A
- Ex: how much pressure does a paper clip exert with its 1mm diameter tip with a force of 50 N?

$$p = \frac{F}{\pi r^2} = \frac{50}{\pi (5 \times 10^{-4})^2} = 6.4 \times 10^7 Pa$$

#### Pressure



 Ex: how much force does air pressure exert on the roof of our classroom?

$$F = P \cdot A = 1.01 \times 10^5 Pa(11m)10m$$
  
 $F = 1.1 \times 10^7 N$ 

• Note: 1 Pascal=1N·m<sup>-2</sup>

THERMODYNAMICS: Processes which cause energy changes as a result of heat flow to/from a system and/or work done by/on a system.

IDEAL GAS: The molecules obey Newton's laws; The intermolecular forces are negligible; The molecules are spherical with negligible volume; The motion of the molecules is random; The collisions are perfectly elastic; The time taken for a collision is negligible.

#### Ideal gas law



- Most gases behave like an ideal gas, as long as we are not at extremes of temperature or pressure
- Based on assumptions of spheres of negligible volume, intermolecular forces
- PV=nRT

#### Gas Properties PhET



- Open the Gas properties applet on PhET
- Choose two variables as your independent and dependent
- Collect data and graph (then share)
- PV=nRT

#### Systems with the same temperature

- Translational kinetic energy
- Vibrational and rotational kinetic energy
- Potential energy from intermolecular forces





ABSOLUTE ZERO OF TEMPERATURE: The lowest temperature possible. -273.16°C or zero kelvin (OK). The temperature at which the volume, pressure and kinetic energy of an ideal gas are zero.

KELVIN TEMPERATURE SCALE: Kelvin is the absolute thermodynamic temperature scale.

INTERNAL ENERGY: The energy contained in an object due to the random KE and PE of the molecules.

THERMAL ENERGY (HEAT): The non-mechanical transfer of energy between a system and its surroundings. Energy is only 'heat' if it is transferred.

#### Ex: Twice as hot?

- What is the temperature of nitrogen gas with twice the kinetic energy as room temperature?
- We convert K=20 °C +273
- Then double: 293x2=586K
- 586K-273=313 °C

EQUATION OF STATE OF AN IDEAL GAS: Equation which is valid for an ideal gas and many real gases at low pressure. R is the universal molar gas constant (8.31 J mol<sup>-1</sup> K<sup>-1</sup>)

# PV = nRT

#### **Do questions 15-18 p. 84**

P-V DIAGRAMS: Also known as 'indicator diagrams'. The diagram shows how the pressure of a gas varies with its volume during a change. The work done (by or on the gas) is represented by the area under the graph.



## Isobaric change

Constant pressure



• W= $P\Delta V$ 

## Isochoric change

Constant volume



## Adiabatic change

No energy enters or leaves the system



## Isothermic change

• Constant temperature



## Adiabatic changes

No heat gained or lost



Do questions 19 p. 85 PHeT simulation: Gas properties

-collect data, how many of these changes can you graph? Save and email the spreadsheet with graphs

## Engine cycles

- Work done in one segment = area under graph
- Total work done = area enclosed by graph



At temperature 290 K and pressure  $4.8 \times 10^5$  Pa, the gas has volume  $9.2 \times 10^{-4}$  m<sup>3</sup>.





.....

(iii) The gas is now heated at constant volume to a temperature of 420 K. Show that the pressure of the gas is now  $2.8 \times 10^6$  Pa.

Finish questions 15-18 p. 84 Do 19 p. 85

## The Carnot cycle

Assumes ideal gas







This question is about p-V diagrams.

The graph below shows the variation with volume of the pressure of a fixed mass of gas when it is compressed adiabatically and also when the same sample of gas is compressed isothermally.



- This question is about p–V diagrams.
- The graph below shows the variation with volume of the pressure of a fixed mass of gas when it is compressed adiabatically and also when the same sample of gas is compressed isothermally.



- (a) State and explain which line AB or AC represents the isothermal compression.
- (b) On the graph, shade the area that represents the difference in work done in the adiabatic change and in the isothermal change.
- (c) Determine the difference in work done, as identified in (b).
- (d) Use the first law of thermodynamics to explain the change in temperature during the adiabatic compression.

- **3.** (a) *pV* constant for isothermal / adiabatic always steeper; **hence** AB; 2
  - (b) area between lines AB and AC shaded; 1
    - (c) area is 150 (±15) small squares; (allow ecf from (b)) work done =  $1.5 \times 1 \times 10^{-3} \times 1 \times 10^{5}$ ; = 150 J; 3

For any reasonable approximate area outside the range 150 (±15) squares award [2 max] for the calculation of energy from the area.

(d) no thermal energy enters or leaves /  $\Delta Q = 0$ ; so work done seen as increase in internal energy; hence temperature rises; 3

Award [0] for a mere quote of the 1st law

6.0

5.0

pressure / x 10 Pa

4.0

3.0

FIRST LAW OF THERMODYNAMICS: The heat supplied to a mass of gas is equal to the increase in its internal energy plus the work done by the gas (expansion is positive work).

SYSTEM AND SURROUNDINGS: The fixed mass of gas which is under consideration can be called the 'system', the place to/from which heat flows is the 'surroundings'.

SECOND LAW OF THERMODYNAMICS: No continually working heat engine can take heat from a source and convert it completely into work.

OR: Thermal energy cannot spontaneously transfer from a region of low temperature to a region of high temperature.

OR: Although local entropy may decrease, the direction of a process is such as to increase the total entropy of the system and surroundings.

PRINCIPLE OF THE CONSERVATION OF ENERGY: Energy may be transformed from one form to another, but it cannot be created or destroyed ie the total energy of a system and its surroundings is constant.

Point A in the p-V diagram below represents the state of an ideal gas.

 $p/\times 10^5 \,\mathrm{Pa}$ 20 8 12 16 24 28 0  $V/\times 10^{-3}\,{\rm m}^3$ 

The number of moles of the gas is 0.64.

(i) Deduce that the temperature of the gas in state A is approximately 300 K.

# Laws of Thermodynamics

#### **SPOILERS!!!**

Harry Potter eats cottage cheese and then marries his cousin on page 236!

> Sorry, that spoiler would only upset me if I had any intention of reading that book.

> > I only read science books, vou see.



According to the second law of thermodynamics the universe will consistently lose free energy through inceasing entropy until eventually the universe experiences heat-death!



#### The Laws of Thermodynamics

- 0. Two bodies in thermal equilibrium are at same T
- Energy can never be created or destroyed.

$$\Delta E = q + w$$

The total entropy of the UNIVERSE
 ( = system plus surroundings) MUST INCREASE in every spontaneous process.

$$\Delta S_{TOTAL} = \Delta S_{system} + \Delta S_{surroundings} > 0$$

3. The entropy (S) of a pure, perfectly crystalline compound at T = 0 K is ZERO. (no disorder)

$$S_{T=0} = 0$$
 (perfect xII)

## **Heat Engine**



 $Q=\Delta U+W$ 

## **Heat Pump**



#### How does a waterwheel work?

- Water naturally flows from high to low
- We can use this to get work out
- If we want to pump the water uphill, we need to put in energy



#### **Heat Engines**

- Heat tends to flow from areas of high temperature to low temperature
- We can use this to get energy out
- Like a waterwheel, the greater the difference, the more energy we can extract.







### Heat pump?

- If we want heat to flow from cold to hot, we must supply work in
- This is the first law of thermodynamics

$$W + Q_L \stackrel{\mathsf{t}}{=} Q_H$$





$$Q_H \stackrel{\tau}{=} W + Q_L$$

#### **Heat Engine**



$$Q_H \stackrel{\tau}{=} W + Q_L$$

### **Heat Pump**



Do 20-21 p. 89 Add #22-23 p. 91\* Read up to p. 94



#### Entropy

- The universe is like a teenager: it loves creating disorder, or "entropy"
- The 2<sup>nd</sup> law of thermodynamics:
  - The entropy of the universe is always increasing
  - Even processes that decrease the entropy of one object still cause total <u>entropy</u> to increase
- This can be seen as a cause for an "arrow" of time

#### Can you prove a video is not <u>reversed</u>?

"What song is this"





# Diffusion

(Solvent moves by concentration gradient)

#### Entropy

- This works for
  - Phase change
  - Chemical reactions
  - Gravity?
  - Demolition,
  - Collisions
  - Misc.

## Entropy

