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D5 Further cosmology (HL)
This section deals with some open questions in cosmology, questions 
that are the subject of intensive current research. These include the 
evidence for and the nature of dark matter and dark energy, � uctuations 
in the CMB, and the rotation curves of galaxies

D5.1 The cosmological principle
The universe appears to be full of structure. There are planets and 
moons in our solar system, there are stars in our galaxy, our galaxy is 
part of a cluster of galaxies and our cluster is part of an even bigger 
supercluster of galaxies. 

If we look at the universe on a very large scale, however, we no longer 
see any structure. If we imagine cutting up the universe into cubes some 
300 Mpc on a side, the interior of any one of these cubes would look 
much the same as the interior of any other, anywhere else in the universe. 
This is an expression of the so-called homogeneity principle in 
cosmology: on a large enough scale, the universe looks uniform.

Similarly, if we look in di� erent directions, we see essentially the 
same thing. If we look far enough in any direction, we will count the 
same number of galaxies. No one direction is special in comparison with 
another. This leads to a second principle of cosmology, the isotropy 
principle. A related observation is the high degree of isotropy of the 
CMB.

These two principles, homogeneity and isotropy, make up what 
is called the cosmological principle, which has had a profound 
role in the development of models of cosmology.

The cosmological principle implies that the universe has no edge (for 
if it did, the part of the universe near the edge would look di� erent from 
a part far from the edge, violating the homogeneity principle). Similarly, 
it implies that the universe has no centre (for if it did, an observation 
from the centre would show a di� erent picture from an observation 
from any other point, violating the principle of isotropy).

D5.2 Fluctuations in the CMB
We have noted several times that the CMB is uniform and isotropic. 
However, it is not perfectly so. There are small variations ΔT in 

temperature, of the order of  
ΔT
T  ≈ 10−5, where T = 2.723 K is the average 

temperature. These variations in temperature are related to variations 
in the density of the universe. In turn, variations in density are the 
key to how structures formed in the universe. With perfectly uniform 
temperature and density in the universe, stars and galaxies would not form. 

In addition to helping us understand structures, CMB anisotropies 
are related to the geometry of the universe. There would be di� erent 
degrees of anisotropy depending on whether the universe has positive, 
zero or negative curvature (see the section on the dependence of the 
scale factor on time later in this section). A number of investigations 
of CMB anisotropies have been carried out, using COBE, WMAP, the 
Planck satellite observatory and the Boomerang (Balloon Observations 
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Of Millimetric Extragalactic Radiation) collaboration. Figure D.33 
shows � uctuations in the CMB temperature obtained by the Boomerang 
collaboration, and three theoretical predictions of what that anisotropy 
should look like in models with positive, negative and zero curvature 
of space. Di� erent colours correspond to di� erent temperatures. Even 
judged by eye, the data appear to be consistent with the � at case. 

Figure D.34 is a spectacular map from the Planck satellite 
observatory, showing CMB � uctuations in temperature as small as 
a few millionths of a degree. This is a map of the radiation � lling the 
universe when it was only about 380 000 years old.

25˚

BOOMERANG

Figure D.33 Fluctuations in temperature 
are shown as diff erences in colour in this 
image from the Boomerang collaboration. 
Theoretical models using space of diff erent 
curvatures are also shown. There is a clear 
match with the fl at-universe case. © The 
Boomerang Collaboration.

Studies of CMB anisotropy also give crucial information on 
cosmological parameters such as the density of matter and energy 
in the universe.

D5.3 Rotation curves and the mass of galaxies
Consider a planet as it revolves about the Sun (Figure D.35a). In Topics 

6 and 10 we determined, using 
GMm

r 2
 = 

mv2

r
 , that the speed of a planet 

a distance r from the Sun is v =    
GM

r  
. This means that v ∝ 

1
   r

  . Plotting 

rotational speed against distance gives what is called a rotation curve, 
as shown in Figure D.35b.

Now consider a spherical mass cloud of uniform density (Figure 
D.36a). What is the speed of a particle rotating about the centre at a 

distance r? We can still use v =    
GM

r  
, but now M stands for the mass in 

the spherical body up to a distance r from the centre. Since the density is 
constant we have that 

ρ = 
M

V
 = 

M
4πr3

3

 = 
3M

4πr3

and hence 

M = 
4πr3ρ

3

Figure D.34 Fluctuations in temperature of the CMB according to ESA’s Planck 
satellite observatory. (©ESA and the Planck Collaboration, reproduced with 
permission)
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Figure D.35 a A particle orbiting a central 
mass. b The rotation curve of the particle 
in a shows a characteristic drop. (From M. 
Jones and R. Lambourne, An Introduction 
to Galaxies and Cosmology, Cambridge 
University Press, in association with 
The Open University, 2004. © The Open 
University, used with permission)
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Thus 

v  =    
G4πr3ρ

3r  

and so v ∝ r. The rotation curve is a straight line through the origin. 
This is valid for r up to R, the radius of the spherical mass cloud. Beyond 
R the curve is like that of Figure D.35.
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Figure D.36 a A particle orbiting around the centre of a uniform spherical cloud. 
b The rotation curve of the particle in a.

Worked example
D.23 Consider a system in which the mass varies with distance from the axis according to M = kr, where k is a 

constant. Derive the rotation curve for such a system.

We start with v =     
GM

r  
. We get v =     

Gkr
r  

 =    Gk = constant. The rotation curve would thus be a horizontal 
straight line.

Figure D.37 shows the rotation curve of the Milky Way galaxy. 
This rotation curve is not one that belongs to a large central mass, 

as in Figure D.35. Its main feature is the � atness of the curve at large 
distances from the centre. Notice that the � atness starts at distances 
of about 13 kpc. The central galactic disc has a radius of about 15 kpc. 
This means that there is substantial mass outside the central galactic 
disc. Furthermore, according to Worked example D.23, a � at curve 
corresponds to increasing mass with distance from the centre. 

The � at part of the galaxy’s rotation curve indicates substantial 
mass far from the centre.

If the mass were contained within a given distance, then past that 
distance the rotation curve should have dropped, as it does in Figure 
D.35. The problem is that no such drop is seen – but at the same time 
no such mass is visible. Arguments like this have led to the conclusion 
that there must be considerable mass at large distances past the galactic 
disc. This is dark matter: matter that is too cold to radiate and so 
cannot be seen. It is estimated that, in our galaxy, dark matter forms a 
spherical halo around the galaxy and has a mass that is about 10 times 
larger than the mass of all the stars in the galaxy! 

Figure D.37 The rotation curve of our 
galaxy shows a fl at region, indicating the 
presence of matter far from the galactic disc.  
(Adapted from Combes, F. (1991) Distribution 
of CO in the Milky Way, Annual Review of 
Astronomy and Astrophysics, 29, pp.195–237)
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D5.4 Dark matter
It is estimated that 85% of the matter in the universe is dark matter. It 
cannot be seen; we know of its existence mainly from its gravitational 
e� ects on nearby bodies. 

What could dark matter be? It could be ordinary, cold matter that 
does not radiate – like, for example, brown dwarfs, black dwarfs or small 
planets. Collectively these are called MACHOs (MAssive Compact 
Halo Objects). This is matter consisting mainly of protons and neutrons, 
so it also called baryonic matter. The problem is that there are limits 
to how much baryonic matter there can be. The limit is at most 15%, so 
dark matter must also contain other, more exotic forms.

The class of non-baryonic objects which are candidates for dark 
matter are called WIMPs (for Weakly Interacting Massive Particles). 
Neutrinos fall into this class since they are known to have a small mass, 
although their tiny mass is not enough to account for all non-baryonic 
dark matter. Uncon� rmed theories of elementary particle physics based 
mainly on the idea of supersymmetry (a proposed symmetry between 
particles with integral spin and particles with half-integral spin) predict 
the existence of various particles that would be WIMP candidates – but 
no such particles have been discovered. 

So the answer to the question ‘what is dark matter?’ is mainly 
unknown at the moment.

D5.5 The cosmological origin of red-shift
In Section D3.2 we derived the formula 

λ
λ0

 = 
R
R0

where R0 is the value of the scale factor at the time of emission of 
a photon of wavelength λ0, R is the value of the scale factor at the 
present time (when the photon is received) and λ is the wavelength of 
the photon as measured at the present time. This gives a cosmological 
interpretation of the red-shift, rather than one based on the Doppler 
e� ect: the space in between us and the galaxies is stretching, so 
wavelengths stretch as well. 

A direct consequence of this is on the temperature of the CMB 
radiation that � lls the universe. The wavelength λ0 corresponds to a 
CMB temperature of T0. By the Wien displacement law, 

λ0T0 = λT = constant

Therefore 

λ
λ0

 = 
T0
T

This implies that

T0
T  = 

R
R0

 or T ∝ 
1
R

This shows that, as the universe expands (that is, as R gets bigger), the 
temperature drops. This is why the universe is cooling down, and why 
the present temperature of the CMB is so low (2.7 K). 
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Worked example
D.24 The photons of CMB radiation observed today are thought to have been emitted at a time when the 

temperature of the universe was about 3.0 × 103 K. Estimate the size of the universe then compared with its 
size now.

From T ∝ 
1
R we � nd 

T0
T  = 

R
R0

, so 
R
R0

 = 
3.0 × 103

2.7  ≈ 1100, so the universe then was about 1100 times smaller.

One of the great problems in cosmology is to determine how the scale 
factor depends on time. We will look at this problem in the next two 
sections.

D5.6 Critical density 
We begin the discussion in this section by solving a problem in 
Newtonian gravitation. Consider a spherical cloud of dust of radius r and 
mass M, and a mass m at the surface of this cloud which is moving away 
from the centre with a velocity v satisfying Hubble’s law, v = H0r; see 
Figure D.38.

The total energy of the mass m is

E = 
1
2 

mv2 − 
GMm

r

If ρ is the density of the cloud, then M = ρ 43 
πr3. Using this together with 

v = H0r, we � nd

E = 
1
2 

mr2    H 20 − 
8πρG

3

The mass m will continue to move away if its total energy is positive. 
If the total energy is zero, the expansion will halt at in� nity; if it is 
negative, contraction will follow the expansion. The sign of the term 

H 20 − 
8πρG

3 , that is, the value of ρ relative to the quantity

ρc = 
3H 20
8πG

 ≈ 10−26 kg m−3

determines the long-term behaviour of the cloud. 
This quantity is known as the critical density. We have only derived 

it in a simple setting based on Newton’s gravitation. What does it have 
to do with the universe? We discuss this in the next section.

D5.7 The variation of the scale factor with time
In 1915 Einstein published his general theory of relativity, replacing 
Newton’s theory of gravitation with a revolutionary new theory in which 
the rules of geometry are dictated by the distribution of mass and energy 
in the universe. Applying Einstein’s theory to the universe as a whole 
results in equations for the scale factor R, and solving these gives the 
dependence of R on time. Einstein himself believed in a static universe – 
that is, a universe with R = constant. His equations, however, did not give 
a constant R. So he modi� ed them, adding his famous cosmological 
constant term, Λ, to make R constant (see Figure D.39).

v
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m

Figure D.38 Estimating critical density.

Exam tip
You must be able to derive the 
formula for the critical density.

R

Time

Figure D.39 A model with a constant scale 
factor. Einstein introduced the cosmological 
constant Λ in order to make the universe 
static.
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In this model there is no Big Bang, and the universe always has 
the same size. This was before Hubble discovered the expanding 
universe. Einstein missed the great chance of theoretically predicting 
an expanding universe before Hubble; he later called adding the 
cosmological constant ‘the greatest blunder of [his] life’. This constant 
may be thought of as related to a ‘vacuum energy’, energy that is present 
in all space. The idea fell into obscurity for many decades but it did not 
go away: it was to make a comeback with a vengeance much later! It is 
now referred to as dark energy.

The � rst serious attempt to determine how R depends on time was 
made by the Russian mathematician Alexander Friedmann (1888–1925). 
Friedmann applied the Einstein equations and realised that there were a 
number of possibilities: the solutions depend on how much matter and 
energy the universe contains.

We de� ne the density parameters Ωm and ΩΛ, for matter and dark 
energy respectively, as

Ωm = 
ρm
ρc

 and ΩΛ = 
ρΛ
ρc

where ρm is the actual density of matter in the universe, ρc is the critical 
density derived in Section D5.6 and ρΛ is the density of dark energy. 
The Friedmann equations give various solutions depending on the 
values of Ωm and ΩΛ. Deciding which solution to pick depends crucially 
on these values, which is why cosmologists have expended enormous 
amounts of energy and time trying to accurately measure them. 

Figure D.40 is a schematic representation of the possibilities; the 
subscript 0 indicates the values of these parameters at the present time. 
There are four regions in the diagram. The shape of the graph of scale 
factor versus time is di� erent from region to region. 

Notice the red dashed line: for models above the line, the geometry 
of the universe resembles that of the surface of a sphere. Those below 
the line have a geometry like that of the surface of a saddle. Points on 
the line imply a � at universe in which the rules of Euclidean geometry 
apply. Figure D.41 illustrates these three models.
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Figure D.40 There are various possibilities 
for the evolution of the universe depending 
on how much energy and mass it contains. 
(From M. Jones and R. Lambourne, An 
Introduction to Galaxies and Cosmology, 
Cambridge University Press, in association 
with The Open University, 2004. © The Open 
University, used with permission.)
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Figure D.42 Solutions of Einstein’s 
equations for the evolution of the scale 
factor. The present time is indicated by ‘now’. 
Notice that the estimated age of the universe 
depends on which solution is chosen. Three 
models assume zero dark energy; the one 
shown by the red line does not.

Figure D.41 Three models with diff erent curvatures. a In negative-curvature models, 
the angles of a triangle add up to less than 180° and initially parallel lines eventually 
diverge. b Ordinary fl at (Euclidean) geometry. c Positive curvature, in which the angles 
of a triangle add up to more than 180° and initially parallel lines eventually intersect. 
(From M. Jones and R. Lambourne, An Introduction to Galaxies and Cosmology, 
Cambridge University Press, in association with The Open University, 2004. © The 
Open University, used with permission)

Of the very many possibilities, we will be interested in just four 
cases. The � rst three correspond to ΩΛ = 0 (they are of mainly historical 
interest, because observations favour ΩΛ ≠ 0). These are shown as the 
orange, green and blue lines in Figure D.42. 

In all three cases the scale factor starts from zero, implying a Big 
Bang. In one possibility (orange line), R(t) starts from zero, increases 
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to a maximum value and then returns to zero; that is, the universe 
collapses after an initial period of expansion. This is called the closed 
model, and corresponds to Ωm > 1, i.e. ρm > ρc. The second possibility 
corresponds to Ωm < 1, i.e. ρm < ρc. Here the scale factor R(t) increases 
without limit – the universe continues to expand forever. This is called 
the open model. The third possibility is that the universe expands 
forever, but with a decreasing rate of expansion, becoming zero at 
in� nite time. This is called the critical model and corresponds to 
Ωm = 1. The density of the universe in this case is equal to the critical 
density: ρm = ρc.

Keep in mind that these three models have ΩΛ = 0 and so are not 
consistent with observations. The fourth case, the red line in Figure 
D.42, is the one that agrees with current observations. Data from the 
Planck satellite observatory (building on previous work by WMAP, 
Boomerang and COBE) indicate that Ωm ≈ 0.32 and ΩΛ ≈ 0.68. This 
implies that Ωm + ΩΛ ≈ 1, and corresponds to the red dashed line in 
Figure D.42. This is consistent with the analysis of the Boomerang data 
that we discussed in Section D5.2, and means that at present our universe 
has a � at geometry and is expanding forever at an accelerating rate, and 
that 32% of its mass–energy content is matter and 68% is dark energy.

D5.8 Dark energy
In Section D3.5 we saw how analysis of distant Type Ia supernovae 
led to the conclusion that the expansion of the universe is accelerating. 
This ran contrary to expectations: gravity should be slowing the distant 
galaxies down. We also saw that an accelerating universe demands a 
non-zero value of the cosmological constant, which in turn implies the 
presence of a ‘vacuum energy’ that � lls all space; this energy has been 
called dark energy. 

The presence of this energy creates a kind of repulsive force that 
not only counteracts the e� ects of gravity on a large scale but actually 
dominates over it, causing acceleration in distant objects rather than the 
expected deceleration. The domination of the e� ects of dark energy 
over gravity appears to have started about 5 billion years ago.

There is now convincing evidence that Ωm + ΩΛ ≈ 1, based on 
detailed studies of anisotropies in CMB radiation undertaken by 
COBE, WMAP, the Boomerang collaboration and the Planck satellite 
observatory. Data from Planck indicate that the mass–energy density 
of the universe consists of approximately 68% dark energy, 27% dark 
matter and 5% ordinary matter. This means that we understand just 
5% of the mass–energy of the universe! These facts – along with 
the discovery (announced in March 2014 but still not con� rmed) of 
gravitational waves, supporting another important part of the Big Bang 
model (in� ation) – make these very exciting times for cosmology!

Nature of science
Cognitive bias
When interpreting experimental results, it is tempting to dismiss or 
� nd ways to explain away results that do not � t with the hypotheses. 
In the late 20th century, most scientists believed that the expansion 
of the universe must be slowing down because of the pull of gravity. 
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Evidence from the analysis of Type Ia supernovae in 1998 showed that 
the expansion of the universe is accelerating – a very unexpected result. 
Corroboration from other sources has led to the acceptance of this 
result, with the proposed dark energy as the cause of the acceleration.

 92 Sketch a graph to show the variation of the 
scale factor for a universe with a non-zero 
cosmological constant.

 93 The diagram below shows a spherical cloud 
of radius R whose mass is distributed with 
constant density.

R

r

a A particle of mass m is at distance r from the 
centre of the cloud. On a copy of the axes 
below, draw a graph to show the expected 
variation with r of the orbital speed v of the 
particle for r < R and for r > R.

R r

v

b Describe one way in which the rotation 
curve of our galaxy di� ers from your graph.

 94 a  What do you understand by the term dark 
matter? 

b Give three possible examples of dark matter.
 95 Distinguish between dark matter and dark 

energy.
 96 Explain why, in an accelerating universe, 

distant supernovae appear dimmer than 
expected.

 97 a  Outline what is meant by the anisotropy of 
the CMB.

b State what can be learned from studies of 
CMB anisotropies. 

 98 State how studies of CMB anisotropy lead to 
the conclusion that the universe is � at.

? Test yourself
 86 a  Outline what is meant by the cosmological 

principle. 
b Explain how this principle may be used to 

deduce that the universe:
  i has no centre 
  ii has no edge.

 87 State two pieces of observational evidence that 
support the cosmological principle.

 88 a  Outline what is meant by the scale factor 
of the universe.

b Sketch a graph to show how the scale factor 
of the universe varies with time for a model 
with zero cosmological constant and a 
density greater than the critical density. 

c Draw another graph to show the variation of 
the CMB temperature for the model in b.

 89 Sketch and label three graphs to show how the 
scale factor of the universe varies with time for 
models with zero cosmological constant. Use 
your graphs to explain why the three models 
imply di� erent ages of the universe.

 90 a  Derive the rotation curve formula (showing 
the variation of speed with distance) for a 
mass distribution with a uniform density.

b Draw the rotation curve for a.
 91 a  Derive the rotation curve formula for a 

spherical distribution of mass in a galaxy that 
varies with the distance r from the centre 
according to M(r) = kr, where k is a constant. 

b By comparing your answer with the rotation 
curve below, suggest why your rotation 
curve formula implies the existence of matter 
away from the centre of the galaxy.

v

r
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104 Explain, with the use of two-dimensional 
examples if necessary, the terms open and 
closed as they refer to cosmological models. 
Give an example of a space that is � nite 
without a boundary and another that is � nite 
with a boundary.

105 The density parameter for dark energy is 

 given by ρΛ = 
Λc 2

3H 20 
. Deduce the value of the 

 cosmological constant, given ΩΛ = 0.68 and 
H0 = 68 km s−1 Mpc−1. 

106 a  List three reasons why Einstein’s prediction 
of a constant scale factor is not correct.

b Identify a point on the diagram in 
Figure D.40 where Einstein’s model is 
located.

107 The Friedmann equation states that 

H 2 = 
8πG

3    ρ + 
Λc2

8πG
− 

kc2

R 2

 where the parameter k determines the 
curvature of the universe: k > 0 implies a 
closed universe, k < 0 an open universe and 
k = 0 a � at universe. Deduce the geometry of 
the universe given that Ωm + ΩΛ = 1.

 99 Use Figure D.40 to suggest whether current 
data support a model with a negative 
cosmological constant.

100 Derive the dependence T ∝ 
1
R of the 

temperature T of the CMB on the scale factor 
R of the universe. 

101 a  Outline what is meant by the critical 
density. 

b Show using Newtonian gravitation that the 
critical density of a cloud of dust expanding 
according to Hubble’s law is given by 

 ρc = 
3H 2

8πG . 

c Current data suggest that Ωm = 0.32 and 
H0 = 68 km s−1 Mpc−1. alculate the matter 
density of the universe.

102 a  Suggest why determination of the mass 
density of the universe is very di�  cult.

b Estimate how many hydrogen atoms per m3 
cubic metre a critical density of 
ρc ≈ 10−26 kg m−3 represents.

103 a  State what is meant by an accelerating of the 
universe.

b Draw the variation of the scale factor with 
time for an accelerating model. 

c Use your answer to draw the variation of 
temperature with time in an accelerating 
model.

Exam-style questions

1 a Describe what is meant by: 
 i luminosity [1]
 ii apparent brightness. [1]

 Achernar is a main-sequence star with a mass equal to 6.7 solar masses. Its apparent brightness 
is 1.7 × 10−8 W m−2 and its surface temperature is 2.6 times the Sun’s temperature. The luminosity 
of the Sun is 3.9 × 1026 W.

b State one characteristic of main-sequence stars. [1]

c Estimate for Achernar:
  i its luminosity [2]
  ii its parallax angle [2]
  iii its radius in terms of the solar radius. [3]

d  i  Describe the method of parallax for measuring distances to stars. [4]
  ii  Suggest whether the parallax method can be used for Achernar. [1]
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2 a  Suggest how the chemical composition of a star may be determined. [3]

b Explain why stars of the following spectral classes do not show any hydrogen absorption lines in 
their spectra:

  i spectral class O [2]
  ii spectral class M.  [2]

c State one other property of a star that can be determined from its spectrum. [1]

3 a  Outline the mechanism by which the luminosity of Cepheid stars varies. [3]

b Describe how Cepheid stars may be used to estimate the distance to galaxies. [4]

c The apparent brightness of a particular Cepheid star varies from 2.4 × 10−8 W m−2 
to 3.2 × 10−8 W m−2 with a period of 55 days. Determine the distance to the Cepheid. 
The luminosity of the Sun is 3.9 × 1026 W. [3]

4 A main-sequence star has a mass equal to 20 solar masses and a radius equal to 1.2 solar radii.

a Estimate: 
  i the luminosity of this star [2]

  ii the ratio 
T

T  of the temperature of the star to that of the Sun. [2]

b   i  State two physical changes the star will undergo after it leaves the main sequence and before 
it loses any mass. [2]

  ii  The star will eject mass into space in a supernova explosion. Suggest whether this will be a 
Type Ia or Type II supernova. [2]

  iii Describe the � nal equilibrium state of this star. [3]

c On a copy of the HR diagram, draw the evolutionary path of the star. [1]
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5 The HR diagram below shows three stars, X, Y and Z.
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a On a copy of the diagram, identify:
 i the main sequence [1]

  ii the region of the white dwarfs [1]
  iii the region of the red giants [1]
  iv the region of the Cepheids. [1]

b Use the diagram to estimate the following ratios of radii:

  i 
RX
RY

 [2]

  ii 
RZ
RX 

. [2]

c Estimate the mass of star X. [2]

d  i  Show the evolutionary path of star X on the HR diagram from the main sequence until its � nal 
equilibrium state. [1]

  ii Explain how this star remains in equilibrium in its � nal state. [2]
  iii  State the condition on the mass of star X in its equilibrium state. [1]

6 a State Hubble’s law. [1]

 Light from distant galaxies arrives on Earth red-shifted.

b Explain what red-shifted means. [2]

c Describe the origin of this red-shift. [2]

d Light from a distant galaxy is emitted at a wavelength of 656 nm and is observed on Earth at a 
wavelength of 780 nm. The distance to the galaxy is 920 Mpc.

  i Calculate the velocity of recession of this galaxy. [2]
  ii  Estimate the size of the universe when the light was emitted relative to its present size. [2]
  iii  Estimate the age of the universe based on the data of this problem. [2]

e Outline, by reference to Type Ia supernovae, how the accelerated rate of expansion of the universe 
was discovered. [3]
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7 a  Outline how the CMB provides evidence for the Big Bang model of the universe. [3]
b The photons observed today in the CMB were emitted at a time when the temperature of the 

universe was about 3.0 × 103 K. 
  i  Calculate the red-shift experienced by these photons from when they were emitted to the 

present time. [2]
  ii  Estimate the size of the universe when these photons were emitted relative to the 

size of the universe now. [1]

8 a  Show that the rotational speed v of a particle of mass m that orbits a central mass M at an orbital 

  radius r is given by v =     
GM

r  
. [1]

b Using the result in a, show that if the mass M is instead an extended cloud of gas with a mass 
distribution M = kr, where k is a constant, then v is constant. [2]

c The rotation curve of our galaxy is given graph below.
  i  Explain how this graph may be used to deduce the existence of dark matter. [3]
  ii State two candidates for dark matter. [2]
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9 a Describe what is meant by the Jeans criterion.

b On a copy of the HR diagram below, draw the path of a protostar of mass equal to one solar mass.

HL
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c The Jeans criterion may be expressed mathematically as 
GM 2

R  ≈ 
3
2NkT, where M and R are the mass  

 and radius of a dust cloud, N is the number of particles in the cloud and T is its temperature. 
  i Show that this is equivalent to the condition 

   R2 ≈ 
9kT

8πGρm

   where m is the mass of a particle in the cloud of dust and ρ is the density of the cloud. [3]
  ii  Estimate the linear size R of a cloud that can collapse to form a protostar, assuming T = 100 K, 

ρ = 1.8 × 10−19 kg m−3 and m = 2.0 × 10−27 kg. [2]

10 a The diagram below shows a particle of mass m and a spherical cloud of density ρ and radius R.HL

R v

m

  i  State the speed of the particle relative to an observer at the centre of the cloud, assuming 
that Hubble’s law applies to this particle. [1]

  ii Show that the total energy of the particle–cloud system is 

    E = 
1
2 

mR2    H 20 − 
8πρG

3  [2]

  iii  Hence deduce that the minimum density of the cloud for which the particle can escape to 
in� nity is 

    ρ = 
3H 20
8πG

 [2]

  iv Evaluate this density using H0 = 68 km s−1 Mpc−1.

b The density found in a iii is known as the critical density. In the context of cosmological models 
and by reference to � at models of the universe, outline the signi� cance of the critical density. [2]

c Current data suggest that the density of matter in our universe is 32% of the critical density. 
  i Calculate the matter density in our universe. [2]
  ii  For this value of the matter densit y, draw a sketch graph to show the variation with time of the 

scale factor of the universe for a model with no dark energy, and also for a model with 
dark energy. [2]

11 a Outline what is meant by � uctuations in the CMB. [2]

b Give two reasons why these � uctuations are signi� cant. [4]

12 a Explain why only elements up to iron are produced in the cores of stars. [2]

b Outline how elements heavier than iron are produced in the course of stellar evolution. [4]

c Suggest why the CNO cycle takes place only in massive main-sequence stars. [2]
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