Cosmology

Newton's model

A perfit description of the Calestiall Orbes, according to the most auncient doctrine of the Pythagoreans. &c.

- According to Newton, the universe was:
- Infinite (in time and space)
- Uniform (same everywhere)
- Static (not moving)

Why is the night sky dark?

Olber's paradox

- If the universe is infinite in size, there must be an infinite number of stars
- Every line of sight should terminate in the surface of a star. Sunglasses anyone?
- We can resolve this in two ways:
- The universe has a finite age, therefore light from distant stars hasn't reached us yet
- The universe is expanding, stretching radiation into the infrared.

Hubble

• Using the biggest telescope in the world, Edwin Hubble discovered some "nebulae" were actually "island universes" or what we now call galaxies

Hubble activity

Use the data on my website to graph recession velocity vs. distance

Use the slope of the graph to find the age of the universe

ROSE CENTER FOR EARTH AND SPACE AMERICAN MUSEUM & NATURAL HISTORY D

Three main types of galaxies:

- Elliptical
- Spiral
- Irregular

Elliptical Galaxies

- These have a round or slightly elliptical shape
- They tend to be red in color

Spiral Galaxies

• Their rotation helps us understand their spiral arms and mass distribution

• They can be classified by their "tightness" and bars

Irregular Galaxies:

• These form when two galaxies collide

The Doppler Effect

- All distant galaxies were observed to be moving away from us
- The further the galaxy, the larger the redshift

Inflation!

 Hubble then realized the universe must be expanding to account for this "cosmological redshift"

Hubble's law

 Use the data on my website to graph distance vs speed

Redshift z

Ex: Find the recessional velocity of a galaxy if a 440 nm spectral line is redshifted by 23 nm. Redshift z is given by:

$$z = \frac{\Delta \lambda}{\lambda} = \frac{v}{c}$$

$$z = \frac{23}{440} = 0.0523$$

$$v = 0.0523c = 1.6 \times 10^7 \, m \cdot s^{-1}$$

Hubble's Law

- If we know the redshift of receding galaxies and how far they are away, we can calculate the...
 - Hubble constant!!!
 - Hubble's law tells us the further a galaxy is, the faster it is receding from us:
 - $v=H_0d$

$$H_0 = 71 \frac{km/s}{mpc} = 2.3x10^{-18} s^{-1}$$

$$t_H = \frac{1}{2.3x10^{-18} s^{-1}} = 13.8x10^9 \text{ years}$$

Redshift example

Ex: What wavelength would we expect to observe for the H-alpha Balmer emission line from a galaxy 11 billion light years away (use H=71km·s⁻¹·Mpc⁻¹)?

$$v = H_0 d \qquad \frac{\Delta \lambda}{\lambda} = \frac{71000m \cdot s^{-1} \cdot Mpc \cdot 3374Mpc}{3 \cdot 10^8 m \cdot s^{-1}}$$

$$z = \frac{\Delta \lambda}{2} = \frac{v}{\Delta \lambda} = 0.798 \cdot 656.3nm$$

$$\Delta \lambda = 524nm$$

$$\frac{\Delta \lambda}{\lambda} = \frac{H_0 d}{c}$$

$$\lambda = 524 + 656 = 1180$$
nm

Cosmic Scale Factor R

As the universe expands, scale factor R increases. This provides an alternate explanation to doppler.

Ex: The peak wavelength of the CMB radiation at present is about 1 mm. In the past there was a time when the peak wavelength corresponded to blue light (400 nm). Estimate the scale factor ratio.

$$z = \frac{\Delta \lambda}{\lambda_0} = \frac{R}{R_0} - 1$$

Ex: The peak wavelength of the CMB radiation at present is about 1 mm. In the past there was a time when the peak wavelength corresponded to blue light (400 nm). Estimate the scale factor ratio.

$$z = \frac{\Delta \lambda}{\lambda_0} = \frac{R}{R_0} - 1$$

$$\frac{R}{R_0} = \frac{\Delta \lambda}{\lambda_0} + 1 = \frac{10^{-3} - 400 \times 10^{-9}}{400 \times 10^{-9}} + 1 = 2500$$

CMBR

Ex: show that 2.7K blackbody radiation corresponds to microwave EM radiation

SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND

$$\lambda_{\text{max}}T = 2.9 \times 10^{-3} \, mK$$

$$\lambda_{\text{max}} = \frac{2.9 \times 10^{-3} mK}{2.725 K} = 1.1 mm$$

Wa (ir

war

name

Questions

SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND

Work on option
 D questions
 from my
 website

