Hertzsprung-Russell

- Use the HR Diagram provided to graph the stars on "bright~.pdf"
- Add temperatures from the chart below

Activity

Class	Color	Prominent Spectral Lines	Surface Temp. (K)
O	Blue	lonized helium, hydrogen	$>25,000 \mathrm{~K}$
B	Blue-white	Neutral helium, hydrogen	$11,000-25,000 \mathrm{~K}$
A	White	Hydrogen, ionized sodium and calcium	$7,500-11,000 \mathrm{~K}$
F	White	Hydrogen, ionized and neutral sodium and calcium	$6,000-7,500 \mathrm{~K}$
G	Yellow	Neutral sodium and calcium, ionized calcium, iron, magnesium	$5,000-6,000 \mathrm{~K}$
K	Orange	Neutral calcium, iron, magnesium	$3,500-5,000 \mathrm{~K}$
M	Red	Neutral iron, magnesium, and neutral titanium oxide	$<3,500 \mathrm{~K}$

The Noble and Most Ancient House of

BLACK

(there are many stories between the lines)

Key (removed from tree)

1: Isla Black, who 'married muggle Bob 2: Phineas, who 'supported muggle rig 3: Marius, 'a squib'
4: Cedrella, who 'married Septimus We 5: Alphard, who 'gave gold to his runav
6: Sirius, who 'ran away
7: Andromeda, who 'married muggle Te

Stefan-Boltzmann law

$$
L=\sigma A T^{4}
$$

- Ex: Betelgeuse has a radius of 3.1E11 m and a temperature of 2800 K . Find its luminosity

$$
\begin{gathered}
L=5.67 \times 10^{-8} 4 \pi\left(3.1 \times 10^{11}\right)^{2}(2800)^{4} \\
L=4.21 \times 10^{30} W
\end{gathered}
$$

- Ex 2: Sol has a radius of $696,000 \mathrm{~km}$ and a temperature of $5,778 \mathrm{~K}$. Find its luminosity

$$
L=\sigma A T^{4}
$$

$$
L=5.67 \times 10^{-8} 4 \pi\left(6.96 \times 10^{8}\right)^{2}(5778)^{4}
$$

$$
L=3.85 \times 10^{26} \mathrm{~W}
$$

- Ex 3: How luminous is Betelgeuse compared to the Sun?
- $11000 \mathrm{~L}_{\mathrm{s}}$
- Ex 4: Rigel has a power output of $117490 \mathrm{~L}_{\mathrm{s}}$. If it has a radius of $78 r_{s}$, find its temperature compared to Sol.

$$
\frac{L_{R}}{L_{S}}=\frac{\sigma A_{R} T_{R}^{4}}{\sigma A_{S} T_{S}^{4}}
$$

$$
\frac{L_{R}}{L_{S}}=\frac{\sigma 4 \pi r_{R}^{2} T_{R}^{4}}{\sigma 4 \pi r_{S}^{2} T_{S}^{4}}
$$

$$
\frac{T_{R}^{4}}{T_{S}^{4}}=\frac{L_{R}}{L_{S}} \frac{r_{S}^{2}}{r_{R}^{2}}
$$

$$
\frac{T_{R}}{T_{S}}=\sqrt[4]{\frac{117490 L_{s}}{L_{s}} \times \frac{r_{s}^{2}}{\left(78 r_{s}\right)^{2}}}
$$

$$
T_{R}=2.1 T_{S}
$$

- I've got a fever!

- How high a fever would you have, to get twice the apparent brightness from a trillionth the distance as the Sun? The Sun has 4×10^{18} times your area.

$$
\begin{array}{ll}
L=\sigma A T^{4} & b=\frac{L}{4 \pi d^{2}} \\
b=\frac{\sigma A T^{4}}{4 \pi d^{2}} & T=\sqrt[4]{\frac{4 \pi d^{2} b}{\sigma A}}
\end{array}
$$

- How high a fever would you have, to get twice the apparent brightness from a trillionth the distance as the Sun? The Sun has 4×10^{18} times your area.

$$
\begin{gathered}
\frac{T_{b}}{T_{s}}=\sqrt[4]{\frac{4 \pi d_{b}^{2} b_{b}}{\sigma A_{b}} \frac{\sigma A_{s}}{4 \pi d_{s}^{2} b_{s}}}=\sqrt[4]{\frac{d_{b}^{2}}{d_{s}^{2}} \frac{b_{b}}{b_{s}} \frac{A_{s}}{A_{b}}} \\
\frac{T_{b}}{T_{s}}=\sqrt[4]{\frac{\left(10^{-12} d_{s}\right)^{2}}{d_{s}^{2}} \frac{2 b_{s}}{b_{s}} \frac{\left(4 \times 10^{18}\right) A_{b}}{A_{b}}}=0.053
\end{gathered}
$$

Brightness

$$
b=\frac{L}{4 \pi d^{2}}
$$

- Apparent Brightness "b" depends on distance and luminosity
- Ex 5a: show that the brightness of the sun is $1360 \mathrm{~W} \cdot \mathrm{~m}^{-2}$
- Ex: Find the brightness of our nearest star: Proxima Centauri

$$
b=\frac{L}{4 \pi d^{2}} \quad L=\sigma A T^{4}
$$

HELLO? 9II?
I'M TRAPPED!
IT'S DARK AND ICAN'T
SEE ANYTHING EXCEPT
THESE TWO DISTORTED
SPLOTCHES OF LIGHT!

 TO AN EXTERNAL WORLD?

Which bunsen burner is hottest?

Wien's displacement law

$$
\lambda_{\max } T=2.9 \times 10^{-3} m \cdot K
$$

Maximum radiation is given off at a wavelength inversely proportional to temperature

Ex: Show that your peak

 wavelength is in the infral$$
\lambda_{\max } T=2.9 \times 10^{-3} \mathrm{~m} \cdot K
$$

$$
\lambda_{\max }=\frac{2.9 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{T}
$$

$$
\lambda_{\max } \cong \frac{3 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{3 \times 10^{2} \mathrm{~K}}
$$

Visible spectrum

$$
\lambda_{\max } \cong 10^{-5} \mathrm{~m}
$$

Ex: If peak wavelength is 400 nm find temperature according to Wien's displacement law. Star?

$T=\frac{2.9 \times 10^{-3}}{400 \times 10^{-9}}$

$$
T=7250 \mathrm{~K}
$$

Ex: Find the temperature of the "coldest" star

$$
\begin{aligned}
& \lambda_{\max } T=2.9 \times 10^{-3} m \cdot K \\
& T=\frac{2.9 \times 10^{-3}}{700 \times 10^{-9}} \\
& T=410 \times 10^{-3} \\
& \lambda_{\max } \\
& T
\end{aligned}
$$

Ex: Find the power radiated per square meter for the previous example
$\frac{L}{A}=\sigma T^{4}=5.67 \times 10^{-8}(7250)^{4}$
L

$$
=1.6 \times 10^{8} W \cdot m^{-2}
$$

Ex: find the distance for a star with a parallax of 0.23 "

$$
\begin{aligned}
& d(\text { parsec })=\frac{1}{p(\text { arc }- \text { second })} \\
& d(\text { parsec })=\frac{1}{0.23 \text { arc }- \text { second }}
\end{aligned}
$$

$$
d=4.3 p c
$$

Ex: find the parallax of proxima centauri

$$
\begin{gathered}
d(p a r s e c)=\frac{1}{p(\text { arc - second })} \\
p=1 / 1.3 p \mathrm{c} \\
p=0.777^{\prime \prime}
\end{gathered}
$$

Star Visual	Apparent Magnitude	Distance(pc)	Absolute Magnitude	Luminosity (rel. to Sun)
Sun	-26.74	4.84813×10^{-6}	4.83	1
Sirius	-1.44	2.6371	1.45	22.5
Arcturus	-0.05	11.25	-0.31	114
Vega	0.03	7.7561	0.58	50.1
Spica	0.98	80.39	-3.55	2250
Barnard's Star	9.54	1.8215	13.24	$1 / 2310$
Proxima Centauri	11.01	1.2948	15.45	$1 / 17700$

Kepler's Laws

- First Law:
- The planets' orbits are ellipses with the Sun at one focus (ellipse activity)
- Second Law:
- The planet sweeps out equal area in equal time
- Third Law:
- The square of the period is proportional to the cube of the radius

$T^{2} \alpha r^{3}$

