Hertzsprung-Russell Activity

 Use the HR Diagram provided to graph the stars on "bright~.pdf"

 Add temperatures from the chart below

Class	Color	Prominent Spectral Lines	Surface Temp. (K)
0	Blue	lonized helium, hydrogen	> 25,000 K
в	Blue-white	Neutral helium, hydrogen	11,000 – 25,000 K
Α	White	Hydrogen, ionized sodium and calcium	7,500 – 11,000 K
F	White	Hydrogen, ionized and neutral sodium and calcium	6,000 – 7,500 K
G	Yellow	Neutral sodium and calcium, ionized calcium, iron, magnesium	5,000 – 6,000 K
к	Orange	Neutral calcium, iron, magnesium	3,500 – 5,000 K
м	Red	Neutral iron, magnesium, and neutral titanium oxide	< 3,500 K

Stefan-Boltzmann law

 $L = \sigma A T^4$

• Ex: Betelgeuse has a radius of 3.1E11 m and a temperature of 2800K. Find its luminosity

$$L = 5.67 \times 10^{-8} 4\pi (3.1 \times 10^{11})^2 (2800)^4$$
$$L = 4.21 \times 10^{30} W$$

• Ex 2: Sol has a radius of 696,000 km and a temperature of 5,778 K. Find its luminosity

$$L = \sigma A T^{4}$$

$$L = 5.67 \times 10^{-8} 4 \pi (6.96 \times 10^{8})^{2} (5778)^{4}$$

$$L = 3.85 \times 10^{26} W$$

- Ex 3: How luminous is Betelgeuse compared to the Sun?
- 11000 L_s

Ex 4: Rigel has a power output of 117490 L_s. If it has a radius of 78 r_s, find its temperature compared to Sol.

$$\frac{L_R}{L_S} = \frac{\sigma A_R T_R^4}{\sigma A_S T_S^4} \qquad \frac{L_R}{L_S} = \frac{\sigma 4\pi r_R^2 T_R^4}{\sigma 4\pi r_S^2 T_S^4}$$

 $T_R = 2.1T_S$

- I've got a <u>fever</u>!
- How high a fever would you have, to get twice the apparent brightness from a trillionth the distance as the Sun? The Sun has 4x10¹⁸ times your area.

$$L = \sigma A T^{4} \qquad b = \frac{L}{4\pi d^{2}}$$
$$b = \frac{\sigma A T^{4}}{4\pi d^{2}} \qquad T = \sqrt[4]{\frac{4\pi d^{2}b}{\sigma A}}$$

 How high a fever would you have, to get twice the apparent brightness from a trillionth the distance as the Sun? The Sun has 4x10¹⁸ times your area.

Brightness $b = \frac{L}{4\pi d^2}$

- Apparent Brightness "b" depends on distance and luminosity
- Ex 5a: show that the brightness of the sun is 1360 W·m⁻²

 Ex: Find the brightness of our nearest star: Proxima Centauri

Which bunsen burner is hottest?

Wien's displacement law

$$\lambda_{\rm max}T = 2.9 \times 10^{-3} m \cdot K$$

Maximum radiation is given off at a wavelength inversely proportional to temperature

Ex: If peak wavelength is 400 nm find temperature according to Wien's displacement law. Star?

Ex: Find the temperature of the "coldest" star

Ex: Find the power radiated per square meter for the previous example

 $\frac{L}{A} = \sigma T^4 = 5.67 \times 10^{-8} (7250)^4$ $\frac{L}{\Delta} = 1.6 \times 10^8 W \cdot m^{-2}$

Ex: find the distance for a star with a parallax of 0.23"

$$d(parsec) = \frac{1}{p(arc - second)}$$

$$d(parsec) = \frac{1}{0.23arc - second}$$

d=4.3pc

Ex: find the parallax of proxima centauri

 $d(parsec) = \frac{1}{p(arc - second)}$

p=1/1.3pc p=0.77"

Star Visual	Apparent Magnitude	Distance(pc)	Absolute Magnitude	Luminosity (rel. to Sun)
Sun	-26.74	4.84813×10 ⁻⁶	4.83	1
Sirius	-1.44	2.6371	1.45	22.5
Arcturus	-0.05	11.25	-0.31	114
Vega	0.03	7.7561	0.58	50.1
Spica	0.98	80.39	-3.55	2250
Barnard's Star	9.54	1.8215	13.24	1/2310
Proxima Centauri	11.01	1.2948	15.45	1/17700

Kepler's Laws

• First Law:

- The planets' orbits are ellipses with the Sun at one focus (ellipse activity)
- Second Law:
 - The planet sweeps out equal area in equal time
- Third Law:
 - The square of the period is proportional to the cube of the radius

