

Intro activity

- Spread out the contents of the envelope on your desk
- First, order them from youngest to oldest
- Second, order from smallest to largest
- Third, order from nearest to farthest

Star finder assignment

- Find the constellations you would find at 9pm tonight:
- Over the Northern horizon
- Over the East horizon
- Straight over head
- Tonight, go outside and:
- Find the moon: what constellation is it in?
- Find Mars: it should be in Scorpius

Option D

No, we aren't going to talk about Star Wars

Arctic Circ

Tropic of Cance

Equat

Tropic of Caprico

Antarctic Circ

Earth's Rotation

- Given $\mathrm{r}=6380 \mathrm{~km}$ How fast are people on the equator moving? How about Kamloopsians?
- $\mathrm{v}=\mathrm{d} / \mathrm{t}$
- =circumference/24 hours
- $=(40,000 \mathrm{~km}) / 24$ hours
- $=464 \mathrm{~m} / \mathrm{s}$
- That's Mach 1.4!
- $\mathrm{v}(\mathrm{K})=298 \mathrm{~m} / \mathrm{s}$
- What if the Earth stopped spinning?

Tropic of Canc

Tropic of Caprico

Antarctic Circ
$\begin{aligned} & \cos \theta=\frac{A}{H} A=H \cos \theta \quad A_{H}=A \cos \theta \quad=6380 \cos 50.7 \\ &=4041 \mathrm{~km}\end{aligned}$

Why do we get seasons?

- The Earth's axis is inclined at 23.5°
- The Earth acts like a top and keeps the poles pointing in the same direction

Why is it winter in December?

- The Northern hemisphere is pointing away from the sun: less direct sun, fewer daylight hours
- It's summer in

Australia in Dec since the Southern
hemisphere is facing the sun!

Midnight Sun?

- North of the Arctic circle, we get 24 h of daylight on the Summer Solstice
- The Arctic circle is
23.5° from the North
Pole, so $66.5^{\circ} \mathrm{N}$ lat

Winter Sun vs. Summer Sun

Constellations

- For thousands of years, people have used the stars for a calendar and for navigation

Clusters vs constellations

- Constellations only seem close in the sky
- Clusters are stars that are truly grouped

To Polaris, the North Star

North Star

Why isn't there a "South Star"?

Precession

- The Earth's axis also precesses like a top's
- In 10,000 years, Vega will be the North Star

- When sighted from a different position, an object seems to change position relative to background stars.

Parallax

- The distance in parsecs to a star with a parallax of p is:

$$
d(\text { parsec })=\frac{1}{p(\mathrm{arc}-\mathrm{sec})}
$$

- Ex: what is the distance to a star with a parallax of 0.23"?

$$
d(\text { parsec })=\frac{1}{0.23}=4.3 p c
$$

Ex: measure the distance to the post

Comparing two pictures:

- Find the parallax angle from the separation relative to iPad total of 54°. Ex:

$$
\text { Angle }=\frac{2.1 \mathrm{~cm}}{19.8 \mathrm{~cm}} \cdot 54^{\circ}
$$

$$
=\frac{5.7^{\circ}}{2}=2.86^{\circ} \text { parallax }
$$

- Ex: what is the distance to a sign post with a parallax of 3° ?
- $3^{\circ} \times 60 \times 60=10800$ "

$$
d=\frac{1}{10800} \quad=9.3 \times 10^{-5}
$$

- What if we didn't move the earth's orbital diameter?

$$
9.3 \times 10^{-5} \times \frac{2 m}{3 \times 10^{11} m}=6.2 \times 10^{-16} p c \times 3.26 \times 9.46 \times 10^{15}=19 m
$$

- Ex 1: what is the distance to a star with a parallax of
- A) $0.3^{\prime \prime}$
- B) $0.06^{\prime \prime}$
- C)The limit of 0.01"

$$
d=\frac{1}{0.01}=100 p c
$$

Magnitude

- We define stellar magnitude as brightness:
- The brightest stars in the sky are classified as magnitude 1 , then 2 , to 5 for the dimmest stars we can see
- But are these brighter stars really brighter or just closer?
- For this reason we separate:
- Apparent magnitude
- How bright a star looks in the sky
- Absolute magnitude
- How bright stars would look if they were all 10pc away

Optical or visual?

Binary Stars

- Do your own research. Define the following:
- Optical binaries
- Visual binaries
- Eclipsing binaries
- Spectroscopic binaries

Binary Stars

- Optical (illusion) binaries only look like they are paired
- Visual binaries are actually orbiting each other
- If we are looking edge-on, we get eclipsing binaries
- We can analyse shifts of spectroscopic binaries

The

distance ladder

How do we know the distances to stars and galaxies?

- For close ($<100 \mathrm{pc}$) stars, we can use parallax
- For distant stars and galaxies we need another method
- If only we knew the luminosity of some reference stars AKA a "standard candle"

Cepheid Variables

- These stars' gases are unstable and so they expand and contract
- The period gives
 Luminosity
- C.f. RR Lyrae stars, Wolf Rayet stars

Cepheid Variables

- The longer the period, the brighter the star
- This allows us to calculate the distance

- Ex 1: what is the apparent brightness of a 250 W heat lamp from 5 m away?

$b=0.80 \mathrm{~W} \cdot \mathrm{~m}^{-2}$
- Ex 1: What is the power of a light bulb that has the same brightness for Mary(2m away)?

$$
b=\frac{\mathrm{L}}{4 \pi d^{2}} \quad L=4 \pi d^{2} b \quad L=4 \pi 2^{2} 0.8=40 \mathrm{~W}
$$

- Ex 3: How much more luminous is star x, which is twice as bright as Polaris, and 3 times further away?

$$
b=\frac{\mathrm{L}}{4 \pi d^{2}}
$$

$\frac{b_{x}}{b_{p}}=\frac{\mathrm{L}_{\mathrm{x}}}{4 \pi d_{x}^{2}} \cdot \frac{4 \pi d_{p}^{2}}{\mathrm{~L}_{\mathrm{p}}}$

$$
\frac{b_{x}}{b_{p}}=\frac{\mathrm{L}_{\mathrm{x}}}{\mathrm{~L}_{\mathrm{p}}} \cdot \frac{d_{p}^{2}}{d_{x}^{2}}
$$

$$
\frac{b_{x}}{b_{p}} \cdot \frac{d_{x}^{2}}{d_{p}^{2}}=\frac{\mathrm{L}_{\mathrm{x}}}{\mathrm{~L}_{\mathrm{p}}}
$$

$$
\frac{2 b_{p}}{b_{p}} \cdot \frac{\left(3 d_{p}\right)^{2}}{d_{p}^{2}}=\frac{\mathrm{L}_{\mathrm{x}}}{\mathrm{~L}_{\mathrm{p}}}
$$

$$
\frac{\mathrm{L}_{\mathrm{x}}}{\mathrm{~L}_{\mathrm{p}}}=18
$$

$$
\mathrm{L}_{\mathrm{x}}=18 \mathrm{~L}_{\mathrm{p}}
$$

Ex: find the distance to the Cepheids below if $\mathrm{b}=4.5 \times 10^{-15} \mathrm{~W} \cdot \mathrm{~m}^{-2}$

Period-Luminosity Relationship

- Ex 1: what is the distance to a star (compared to Sol) with 2000 solar luminosity and a brightness of $\mathrm{b}=4.5 \times 10^{-15} \mathrm{~W} \mathrm{~m}^{-2}$

$$
d_{c}=2.5 \times 10^{10} \mathrm{AU}
$$

Start R\&D Questions

- Choose 7 of \#1-10 p. 30
- Also start Vocab definitions: choose 5 words from Summary p. 29-30

