Topic 6 Fields at work

Newton's

Gravitation

- Newton's most original contribution!
- All objects in the universe exert a gravitational pull on each other
- F depends on:
$-\mathrm{d}$

"Nothing yot . . . How about you, Newton?"

Gravitational Definitions

- This is where most people mix up problems
- Mass, Force or Field?
$-25 \mathrm{~N}$
- Weight
$-5 \mathrm{~kg}$
- $9.8 \mathrm{~N} / \mathrm{kg}$
- Apparent Weight
- Gravitational acceleration
- 25lb!?
$-1.63 \mathrm{~m} / \mathrm{s}^{2}$

One does not simply...

...mix up mass and weight

ONEDOESSNOTSIMPIY

USE A WRONG WEDIE PIGTURE

Universal gravitation:

$\frac{G M m}{r^{2}}$

- Where G is the universal gravitational constant

The problem in determining " G " is in measuring the feeble force between two ordinary (and "weighable") objects
Ex 1: Find the force of attraction between Rachel $(50 \mathrm{~kg})$ and $\operatorname{Matt}(80 \mathrm{~kg})$ if they sit 2 m apart.

$$
F_{g}=\frac{G M m}{r^{2}}
$$

$$
F_{g}=\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \cdot 80 \mathrm{~kg} \cdot 50 \mathrm{~kg}}{(2 \mathrm{~m})^{2}}
$$

$$
F_{g}=6.7 \times 10^{-8} \mathrm{~N}
$$

Too small to measure directly:

Cavendish's "Weigh the Earth" Experiment

- If we can get a measurable force for two known masses, we can find G
- Once G is known, we can "weigh" anything!
- Find G if Cavendish calculated the force between the 158 kg mass and the 0.73 kg mass (when their centers are 25 cm apart) to be:

$$
F_{g}=1.24 \times 10^{-7} \mathrm{~N}
$$

$$
F_{g}=\frac{G M m}{r^{2}}
$$

$$
G=\frac{F_{g} r^{2}}{M m}=\frac{1.24 \times 10^{-7} N(0.25 m)^{2}}{158 \mathrm{~kg} \cdot 0.73 \mathrm{~kg}}
$$

$G=6.7 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

Ex 2: find mass

- Use the gravitational constant to find the Earth's mass

$$
F=\frac{G M m}{r^{2}}
$$

$$
M=\frac{F r^{2}}{G m}
$$

$$
M=\frac{9.81 \mathrm{~N} \cdot\left(6.38 \times 10^{6} \mathrm{~m}\right)^{2}}{6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \cdot 1.00 \mathrm{~kg}}
$$

- Ex 2: find the gravitational field strength "g" at an altitude of 130 km . Careful!

$$
\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \cdot 5.98 \times 10^{24} \mathrm{~kg}}{\left(6.38 \times 10^{6} \mathrm{~m}+1.3 \times 10^{5} \mathrm{~m}\right)^{2}}
$$

$$
g=9.41 \mathrm{~N} / \mathrm{kg}
$$

Ex 4: find mass

- Use the Earth's orbit to find the mass of the Sun

$$
F=m a
$$

$$
G M m _m 4 \pi^{2} r
$$

$$
M=\frac{\left(3.0 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2} 1.5 \times 10^{11} \mathrm{~m}}{6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}}
$$

$$
M=2.0 \times 10^{30} \mathrm{~kg}
$$

Exercises

- P. 183-4 \#1-3

Ex. 3: find g on the moon.

$$
g=\frac{G M}{r^{2}}
$$

$$
=\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \cdot 7.35 \times 10^{22} \mathrm{~kg}}{\left(1.74 \times 10^{6} \mathrm{~m}\right)^{2}}
$$

$$
g=1.62 \mathrm{~N} / \mathrm{kg}
$$

Ex 5: find speed

- How fast would you need to orbit a 10 Solar mass black hole at a distance of 100 km ?

$$
v=1.15 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Energy

Gravitational Potential Energy

- Switching from relative potential energy $m g \Delta h$
- Absolute Grav $\mathrm{E}_{\mathrm{p}}=-\mathrm{GMm} / \mathrm{r}$
- This is negative since gravity is always an attractive force. We have to put energy into the system to separate the masses.
- To find the energy needed to lift a mass off the surface of a planet, simply subtract the potential energy before and after

Ex 1: How much potential energy?

- What is the gravitational energy of a 55 kg "little prince" standing on the surface of a 100 m wide, $3 \times 10^{9} \mathrm{~kg}$ asteroid?

$$
E_{p}=\frac{-G M m}{r}
$$

$$
E_{p}=-0.22 J
$$

Ex 2: $\Delta \mathrm{E}$

- How much energy is required to lift off a 2900 Ton Saturn V rocket 100 km straight off the surface of the planet?

$$
\Delta E_{p}=\Delta\left(\frac{-G M m}{r}\right)
$$

$$
\Delta E_{p}=-G M m\left(\frac{1}{\left(6.48 \times 10^{6}\right)}-\frac{1}{\left(6.38 \times 10^{6}\right)}\right)
$$

$$
\Delta E_{p}=-G M m\left(\frac{1}{r}-\frac{1}{r_{0}}\right)
$$

$$
\Delta E_{p}=2.8 T J
$$

Ex 4: Escape velocity

- Find the escape velocity for:
- the Earth
- the Moon
- a 10 km diameter comet
- This is the minimum velocity for which kinetic energy just balances potential, or:

$$
E_{T}=E_{k}+E_{p}=0
$$

$$
E_{k}=-E_{p}
$$

- The Earth:

$v=11.1 \mathrm{~km} / \mathrm{s}$

- The Moon:

$v=2.4 \mathrm{~km} / \mathrm{s}$
- The comet: mass?

$$
M=\rho V=\rho \frac{4}{3} \pi r^{3}
$$

$$
M=1000 \mathrm{~kg} / \mathrm{m}^{3} \frac{4}{3} \pi(5000 \mathrm{~m})^{3}
$$

$$
M=5.24 \times 10^{14} \mathrm{~kg}
$$

$v=\sqrt{\frac{2 G M}{r}}$

$$
v=\sqrt{\frac{2 \cdot G \cdot 5.24 \times 10^{14} \mathrm{~kg}}{5000 \mathrm{~m}}}
$$

$$
v=3.7 \mathrm{~m} / \mathrm{s}
$$

- The comet continued: could you jump clear off the surface?

$$
v_{e s c}=3.7 \mathrm{~m} / \mathrm{s}
$$

$$
g=\frac{G M}{r^{2}}
$$

$$
g=\frac{G \cdot 5.24 \times 10^{14} \mathrm{~kg}}{(5000 \mathrm{~m})^{2}} \quad g=0.0014 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
F_{n e t}=m a
$$

$$
a=\frac{F_{g}+F_{N}}{m}=\frac{m g_{c}-2 m g_{E}}{m}
$$

$$
a=g_{c}-2 g_{E}
$$

$$
a=19.6 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& v^{2}=v_{0}{ }^{2}+2 a d \\
& v=\sqrt{2 a d}=\sqrt{2 \cdot 19.6 \mathrm{~m} / \mathrm{s}^{2} \cdot 0.5 \mathrm{~m}} \\
& v=4.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- The lesson? Be careful when jumping around on a comet!

Exercises

- P. 127 \#1-3

IT TAKES THE SAME AMOUNT OF ENERGY TOLAUNOH SOMEIHING ON AN ESCAPE TRAJEGTORY AW/AY FROM EARTH AS IT WOULD TO LAUNCH IT $6,000 \mathrm{kn}$ UPWARD UNDER CONSANT $9.81 \mathrm{~m} / \mathrm{s}^{2}$ EARTH GRANTTY.

HENCE, EARTH'S WELL IS 6,000 KH DEEP.

GRAVITY WELLS

 SCAUED TD EAKTH SURFACE GRAMITYTh60whr srous The 'DePM' of

 N CONSTNIT EARTHS KRCE GNWITY-
 Fon pir RHers GNiTV nveretry EAOH PMATT OGOWN OUT NHAF AT tee berrorior its velh wimy pe pron of Te weu rociked pow bothe RANETS/RAT SUNACE. THE PANET SCES ARE TDTRE SNE SCOLE ASTHE WCULS NTLPPANETWRO DETANCES NRE NOT TO SCAEE.

$$
9.9 .4{ }^{2} / s^{*}
$$

JUPITER

 suexisiof oknitr
IF iou Droned A pey brey rose

 contes pho if Te presore vew
 Sonclest on/mistave Tw
 Cowspur op Ss^{4} gekry Gowit:

 MAKES IT DENSER DUETO THE ETRA SQUEEZING OF GRAVITY.
IF YOU DROPPED A FEN DOZEN MORE JUPTERS INTO IT, THE PRESSURE WOUD IGNITE PUSION AND MAIE ITA STAR.

$$
\begin{aligned}
& \text { THE FLAKE EQUATION: } \\
& \text { FRACTION OF PEOPLe E WITH } \\
& \text { FRACTION OF PEOPLE WHO } \\
& \text { IMAGINE AN ALIEN ENCOUNTER PROBABILITY } \\
& \text { BECAUSE THEY'RE CrAZY OR } \\
& \text { WANT TO FEEL SPECIAL } \\
& \text { THAT THEY'LL } \\
& \text { TEL SOMEONE } \\
& \text { FRACTION OF PEOPlE ETH } \\
& \text { AVERAGE NUMBER } \\
& \text { OF PEOPLE EACH } \\
& \text { FRIEND zEUS THIS } \\
& \text { "FIRSTHAND" ACCOUNT } \\
& \text { THE MEANS AND MOTiVATION } \\
& \text { TO SHARE THE STORY WITH } \\
& \text { A WIPER AUDIENCE (BLOOd, } \\
& \text { FORUMS, REPORTERS) } \\
& \text { (10) }(10)(9 / 10)(1 / 100) \\
& \text { PROBABILITY THAT ANY } \\
& \text { mETALS NOT sITING THE } \\
& \text { NARRATIVE WILL BE REViSED } \\
& \text { OR FORGOTtEN IN RETEUING }
\end{aligned}
$$

EVEN WITH CONSERVATVE GUESSES FOR THE VALUES OF THE VARIABLES, THIS SUGESTS THERE MUST BE A HUGE NUMBER OF CREDIBLE-SOUNDING ALIEN SIGHTINGS OUT THERE, AVAILABLE TO ANYONE WHO WANTS TO BELIEVE!

Orbital Velocity

Orbital velocity

- This can be thought of as the half way point towards total freedom: orbital energy is half the potential energy at that point.
- This gives us:

Ex 3: Geosynchronous Orbit

- What period should a satellite in geosynchronous orbit have?
- How fast is a satellite in geosynchronous orbit (42000 km)?

$v=3.1 \mathrm{~km} \cdot \mathrm{~s}^{-1}$

Gravitational Potential

- This is energy per unit mass

- Ex: what is the potential at a point 3500 km above the surface of the Earth?

$$
V=-\frac{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24}}{6.38 \times 10^{6}+3.5 \times 10^{6}}
$$

$$
V=-4.0 \times 10^{7} \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

What is your maximum potential?

$$
V=-\frac{G M}{r}
$$

$V=-\frac{6.67 \times 10^{-11}(80)}{0.2}$

$$
V=-30 \mathrm{~nJ} \cdot \mathrm{~kg}^{-1}
$$

Can you graph your potential?

$$
V=-\frac{G M}{r}
$$

Gravitational Potential

- This can also be expressed as $\mathrm{V}=\mathrm{gh}$. Ex: what is the gravitational potential on NorKam's roof, relative to the ground?

$$
V=g h=5 \cdot 9.8=49 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

- Ex: what is the potential difference on the Crystal chair?

$$
\Delta V=g \Delta h=244 \cdot 9.8=2400 \mathrm{~J} \cdot \mathrm{~kg}^{-1}
$$

Exercises

- Finish up to \#5 p. 185
- Continue up to \#11 p. 190
- Keep working on IA

Centripetal Acceleration

- We can have acceleration with constant speed
- If $a=\Delta v / \Delta t$ we find the direction of a is towards the center of the circle
$\Delta v=v-u$
$=v+(-u)$

Magnitude of a_{c}

- We can also express this in terms of period of the rotation since $\mathrm{v}=\mathrm{d} / \mathrm{t}$
- $\mathrm{v}=\mathrm{d} / \mathrm{t}=2 \pi \mathrm{r} / \mathrm{T}$
- So we also have

$4 \pi^{2} r$

$a_{c}=$
T^{2}

Ex 1: find the acceleration

- A 2 kg mass is swung at the end of a 0.5 m rope with a period of rotation of 0.75 s . Find a

$$
a_{c}=\frac{4 \pi^{2} r}{T^{2}}
$$

Figure 12-7. Bola.
$a_{c}=\frac{4 \pi^{2} \cdot 0.5 m}{(0.75 s)^{2}}$

Ex 2: find force

- The Earth travels in its orbit at a speed of about $30 \mathrm{~km} / \mathrm{s}$. What force is necessary to keep it in its orbit?

$$
=\frac{5.98 \times 10^{24} \mathrm{~kg}(30000 \mathrm{~m} / \mathrm{s})^{2}}{1.5 \times 10^{11} \mathrm{~m}}
$$

Try it!

- Lab 4-1 p. 110 Physics Two

Ex 3: Geosynchronous Orbit

- What orbital radius should this satellite have?

$$
\begin{aligned}
& a_{c}=g \\
& \frac{4 \pi^{2} r}{T^{2}}=\frac{G M}{r^{2}} \\
& 4 \pi^{2} r^{3}=G M T^{2}
\end{aligned}
$$

$$
r=\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}}
$$

$$
r=\sqrt[3]{\frac{\left(6.67 \times 10^{-11}\right) 5.98 \times 10^{24}(86164)^{2}}{4 \pi^{2}}}
$$

$$
r=4.22 \times 10^{7} \mathrm{~m}
$$

Exercises

- Continue up to \#19 p. 194
- Keep working on IA

